Show simple item record

dc.contributor.authorSteinmann, Vera
dc.contributor.authorChakraborty, Rupak
dc.contributor.authorRekemeyer, Paul H.
dc.contributor.authorHartman, Katy
dc.contributor.authorBrandt, Riley E.
dc.contributor.authorPolizzotti, Alex
dc.contributor.authorYang, Chuanxi
dc.contributor.authorMoriarty, Tom
dc.contributor.authorGradecak, Silvija
dc.contributor.authorGordon, Roy Gerald
dc.contributor.authorBuonassisi, Tonio
dc.date.accessioned2016-09-27T18:59:58Z
dc.date.issued2016
dc.identifierQuick submit: 2016-08-22T15:59:35-0400
dc.identifier.citationSteinmann, Vera, Rupak Chakraborty, Paul H. Rekemeyer, Katy Hartman, Riley E. Brandt, Alex Polizzotti, Chuanxi Yang, et al. 2016. “A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System.” ACS Applied Materials & Interfaces 8 (34) (August 31): 22664–22670. doi:10.1021/acsami.6b07198.en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:28553791
dc.description.abstractAs novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing “false negative” results. Here, we demonstrate a device engineering solution towards a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400˚C) to stimulate grain growth, followed by a much thinner, low-temperature (200˚C) absorber deposition. At lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and demonstrate a more than 3.5x superior shunt resistance Rsh with smaller standard error σRsh. Electron-beam induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.en_US
dc.description.sponsorshipChemistry and Chemical Biologyen_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionof10.1021/acsami.6b07198en_US
dash.licenseOAP
dc.subjectdevice shuntingen_US
dc.subjectnovel absorber materialsen_US
dc.subjectperformance reliabilityen_US
dc.subjectphotovoltaicsen_US
dc.subjectthin-filmsen_US
dc.subjecttin sulfideen_US
dc.titleA Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material Systemen_US
dc.typeJournal Articleen_US
dc.date.updated2016-08-22T19:59:56Z
dc.description.versionAccepted Manuscripten_US
dc.relation.journalACS Appl. Mater. Interfacesen_US
dash.depositing.authorGordon, Roy Gerald
dc.date.available2016
dc.date.available2016-09-27T18:59:58Z
dc.identifier.doi10.1021/acsami.6b07198*
dash.authorsorderedfalse
dash.contributor.affiliatedYang, Chuanxi
dash.contributor.affiliatedSteinmann, Vera
dash.contributor.affiliatedGordon, Roy


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record