Time-Resolved Temperature Measurements during Rapid Solidification of Si-As Alloys Induced by Pulsed-Laser Melting.

DSpace/Manakin Repository

Time-Resolved Temperature Measurements during Rapid Solidification of Si-As Alloys Induced by Pulsed-Laser Melting.

Citable link to this page

 

 
Title: Time-Resolved Temperature Measurements during Rapid Solidification of Si-As Alloys Induced by Pulsed-Laser Melting.
Author: Kittl, J. A.; Brunco, David P.; Reitano, Riccardo; Thompson, Michael O.; Aziz, Michael

Note: Order does not necessarily reflect citation order of authors.

Citation: Kittl, J. A., Riccardo Reitano, Michael J. Aziz, David P. Brunco, and Michael O. Thompson. 1993. Time-resolved temperature measurements during rapid solidification of Si-As alloys induced by pulsed-laser melting. Journal of Applied Physics 73(8): 3725-3733.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: The solidification of Si-As alloys induced by pulsed-laser melting was studied at regrowth velocities where the partition coefficient is close to unity. The congruent melting temperatures T0 of Si-As alloys were determined using a temperature measurement technique developed for this work, and was confirmed with T0 measurements using three other methods. The time-resolved temperature measurement uses a thin-film platinum thermistor, below and electrically isolated from the Si-As alloy layer, to directly measure the temperature during solidification. The other techniques compared the results of heat flow simulations with the fluence dependence of the peak melt depth obtained by transient conductance, the fluence dependence of the melt duration determined from time-resolved reflectivity and transient conductance, and the fluence threshold for the initiation of melting. This combination of measurements in conjunction with Rutherford backscattering spectrometry permitted the determination of the solid-liquid interface temperature, velocity and partition coefficient, the latent heat of fusion and T0 for Si-4.5 at. % As and Si-9 at. % As alloys. The values of T0 determined by all four independent methods were consistent, indicating overall agreement between the direct experimental measurements and the analyses based on heat flow simulations. T0 was determined to be 1565±25 K for 4.5 at. % As and 1425±25 K for 9 at. % As. In addition, the enthalpy of fusion was determined to be independent of composition for the range studied. The values obtained in this work are compared with previous measurements.
Published Version: http://dx.doi.org/10.1063/1.352903
Other Sources: http://www.seas.harvard.edu/matsci/people/aziz/publications/mja060.pdf
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:2870613
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters