Show simple item record

dc.contributor.authorLingren, Todden_US
dc.contributor.authorChen, Peien_US
dc.contributor.authorBochenek, Josephen_US
dc.contributor.authorDoshi-Velez, Finaleen_US
dc.contributor.authorManning-Courtney, Pattyen_US
dc.contributor.authorBickel, Julieen_US
dc.contributor.authorWildenger Welchons, Leahen_US
dc.contributor.authorReinhold, Judyen_US
dc.contributor.authorBing, Nicoleen_US
dc.contributor.authorNi, Yizhaoen_US
dc.contributor.authorBarbaresi, Williamen_US
dc.contributor.authorMentch, Franken_US
dc.contributor.authorBasford, Melissaen_US
dc.contributor.authorDenny, Joshuaen_US
dc.contributor.authorVazquez, Lyamen_US
dc.contributor.authorPerry, Cassandraen_US
dc.contributor.authorNamjou, Bahramen_US
dc.contributor.authorQiu, Haijunen_US
dc.contributor.authorConnolly, Johnen_US
dc.contributor.authorAbrams, Debraen_US
dc.contributor.authorHolm, Ingrid A.en_US
dc.contributor.authorCobb, Beth A.en_US
dc.contributor.authorLingren, Natalineen_US
dc.contributor.authorSolti, Imreen_US
dc.contributor.authorHakonarson, Hakonen_US
dc.contributor.authorKohane, Isaac S.en_US
dc.contributor.authorHarley, Johnen_US
dc.contributor.authorSavova, Guerganaen_US
dc.date.accessioned2016-10-11T20:27:12Z
dc.date.issued2016en_US
dc.identifier.citationLingren, T., P. Chen, J. Bochenek, F. Doshi-Velez, P. Manning-Courtney, J. Bickel, L. Wildenger Welchons, et al. 2016. “Electronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorder.” PLoS ONE 11 (7): e0159621. doi:10.1371/journal.pone.0159621. http://dx.doi.org/10.1371/journal.pone.0159621.en
dc.identifier.issn1932-6203en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:29002605
dc.description.abstractObjective: Cohort selection is challenging for large-scale electronic health record (EHR) analyses, as International Classification of Diseases 9th edition (ICD-9) diagnostic codes are notoriously unreliable disease predictors. Our objective was to develop, evaluate, and validate an automated algorithm for determining an Autism Spectrum Disorder (ASD) patient cohort from EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence patterns of medical comorbidities in ASD. Methods: We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard patient set was labeled by clinicians at Boston Children’s Hospital (BCH) (N = 150) and Cincinnati Children’s Hospital and Medical Center (CCHMC) (N = 152). Two algorithms were created: (1) rule-based implementing the ASD criteria from Diagnostic and Statistical Manual of Mental Diseases 4th edition, (2) predictive classifier. The positive predictive values (PPV) achieved by these algorithms were compared to an ICD-9 code baseline. We clustered the patients based on grouped ICD-9 codes and evaluated subgroups. Results: The rule-based algorithm produced the best PPV: (a) BCH: 0.885 vs. 0.273 (baseline); (b) CCHMC: 0.840 vs. 0.645 (baseline); (c) combined: 0.864 vs. 0.460 (baseline). A validation at Children’s Hospital of Philadelphia yielded 0.848 (PPV). Clustering analyses of comorbidities on the three-site large cohort (N = 20,658 ASD patients) identified psychiatric, developmental, and seizure disorder clusters. Conclusions: In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs provide further hypothetical evidence for distinct courses in ASD. The proposed automated algorithms for cohort selection open avenues for other large-scale EHR studies and individualized treatment of ASD.en
dc.language.isoen_USen
dc.publisherPublic Library of Scienceen
dc.relation.isversionofdoi:10.1371/journal.pone.0159621en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966969/pdf/en
dash.licenseLAAen_US
dc.subjectBiology and Life Sciencesen
dc.subjectPsychologyen
dc.subjectDevelopmental Psychologyen
dc.subjectAutism Spectrum Disorderen
dc.subjectSocial Sciencesen
dc.subjectPhysical Sciencesen
dc.subjectMathematicsen
dc.subjectApplied Mathematicsen
dc.subjectAlgorithmsen
dc.subjectMachine Learning Algorithmsen
dc.subjectSimulation and Modelingen
dc.subjectNeuroscienceen
dc.subjectCognitive Scienceen
dc.subjectArtificial Intelligenceen
dc.subjectMachine Learningen
dc.subjectComputer and Information Sciencesen
dc.subjectMedicine and Health Sciencesen
dc.subjectPediatricsen
dc.subjectDiagnostic Medicineen
dc.subjectPeople and Placesen
dc.subjectPopulation Groupingsen
dc.subjectAge Groupsen
dc.subjectChildrenen
dc.subjectFamiliesen
dc.subjectDatabase and Informatics Methodsen
dc.subjectHealth Informaticsen
dc.subjectElectronic Medical Recordsen
dc.titleElectronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorderen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalPLoS ONEen
dash.depositing.authorHolm, Ingrid A.en_US
dc.date.available2016-10-11T20:27:12Z
dc.identifier.doi10.1371/journal.pone.0159621*
dash.authorsorderedfalse
dash.contributor.affiliatedHolm, Ingrid
dash.contributor.affiliatedSavova, Guergana
dash.contributor.affiliatedKohane, Isaac


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record