Composite alginate gels for tunable cellular microenvironment mechanics

DSpace/Manakin Repository

Composite alginate gels for tunable cellular microenvironment mechanics

Citable link to this page


Title: Composite alginate gels for tunable cellular microenvironment mechanics
Author: Khavari, Adele; Nydén, Magnus; Weitz, David A.; Ehrlicher, Allen J.

Note: Order does not necessarily reflect citation order of authors.

Citation: Khavari, Adele, Magnus Nydén, David A. Weitz, and Allen J. Ehrlicher. 2016. “Composite alginate gels for tunable cellular microenvironment mechanics.” Scientific Reports 6 (1): 30854. doi:10.1038/srep30854.
Full Text & Related Files:
Abstract: The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4–12 kPa) as compared to healthy tissue (E = 0.4–2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation.
Published Version: doi:10.1038/srep30854
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search