Show simple item record

dc.contributor.authorAratyn-Schaus, Yvonneen_US
dc.contributor.authorPasqualini, Francesco S.en_US
dc.contributor.authorYuan, Hongyanen_US
dc.contributor.authorMcCain, Megan L.en_US
dc.contributor.authorYe, George J.C.en_US
dc.contributor.authorSheehy, Sean P.en_US
dc.contributor.authorCampbell, Patrick H.en_US
dc.contributor.authorParker, Kevin Kiten_US
dc.date.accessioned2016-10-11T20:28:28Z
dc.date.issued2016en_US
dc.identifier.citationAratyn-Schaus, Yvonne, Francesco S. Pasqualini, Hongyan Yuan, Megan L. McCain, George J.C. Ye, Sean P. Sheehy, Patrick H. Campbell, and Kevin Kit Parker. 2016. “Coupling primary and stem cell–derived cardiomyocytes in an in vitro model of cardiac cell therapy.” The Journal of Cell Biology 212 (4): 389-397. doi:10.1083/jcb.201508026. http://dx.doi.org/10.1083/jcb.201508026.en
dc.identifier.issn0021-9525en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:29002688
dc.description.abstractThe efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell–derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell–cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell–cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes.en
dc.language.isoen_USen
dc.publisherThe Rockefeller University Pressen
dc.relation.isversionofdoi:10.1083/jcb.201508026en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754718/pdf/en
dash.licenseLAAen_US
dc.subjectReporten
dc.titleCoupling primary and stem cell–derived cardiomyocytes in an in vitro model of cardiac cell therapyen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalThe Journal of Cell Biologyen
dash.depositing.authorPasqualini, Francesco S.en_US
dc.date.available2016-10-11T20:28:28Z
dc.identifier.doi10.1083/jcb.201508026*
dash.contributor.affiliatedCampbell, Patrick
dash.contributor.affiliatedSheehy, Sean Paul
dash.contributor.affiliatedParker, Kevin
dash.contributor.affiliatedPasqualini, Francesco


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record