Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi

DSpace/Manakin Repository

Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi

Citable link to this page

 

 
Title: Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi
Author: Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.; Paša-Tolić, Ljiljana; Chaput, Dominique L.; Haridas, Sajeet; Wu, Si; LaButti, Kurt; Grigoriev, Igor V.; Henrissat, Bernard; Santelli, Cara M.; Hansel, Colleen M.

Note: Order does not necessarily reflect citation order of authors.

Citation: Zeiner, C. A., S. O. Purvine, E. M. Zink, L. Paša-Tolić, D. L. Chaput, S. Haridas, S. Wu, et al. 2016. “Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi.” PLoS ONE 11 (7): e0157844. doi:10.1371/journal.pone.0157844. http://dx.doi.org/10.1371/journal.pone.0157844.
Full Text & Related Files:
Abstract: Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.
Published Version: doi:10.1371/journal.pone.0157844
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951024/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:29002694
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters