Show simple item record

dc.contributor.authorAyhan, Dilay Hazalen_US
dc.contributor.authorTamer, Yusuf Talhaen_US
dc.contributor.authorAkbar, Mohammeden_US
dc.contributor.authorBailey, Stacey M.en_US
dc.contributor.authorWong, Michaelen_US
dc.contributor.authorDaly, Seth M.en_US
dc.contributor.authorGreenberg, David E.en_US
dc.contributor.authorToprak, Erdalen_US
dc.date.accessioned2016-11-18T20:04:57Z
dc.date.issued2016en_US
dc.identifier.citationAyhan, Dilay Hazal, Yusuf Talha Tamer, Mohammed Akbar, Stacey M. Bailey, Michael Wong, Seth M. Daly, David E. Greenberg, and Erdal Toprak. 2016. “Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy.” PLoS Biology 14 (9): e1002552. doi:10.1371/journal.pbio.1002552. http://dx.doi.org/10.1371/journal.pbio.1002552.en
dc.identifier.issn1544-9173en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:29407562
dc.description.abstractThe lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene’s sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities.en
dc.language.isoen_USen
dc.publisherPublic Library of Scienceen
dc.relation.isversionofdoi:10.1371/journal.pbio.1002552en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025249/pdf/en
dash.licenseLAAen_US
dc.subjectMedicine and Health Sciencesen
dc.subjectPharmacologyen
dc.subjectDrugsen
dc.subjectAntimicrobialsen
dc.subjectAntibioticsen
dc.subjectBiology and Life Sciencesen
dc.subjectMicrobiologyen
dc.subjectMicrobial Controlen
dc.subjectAntimicrobial Resistanceen
dc.subjectAntibiotic Resistanceen
dc.subjectPhysical Sciencesen
dc.subjectMaterials Scienceen
dc.subjectMaterials by Structureen
dc.subjectOligomersen
dc.subjectGeneticsen
dc.subjectMutationen
dc.subjectDeletion Mutationen
dc.subjectMedical Microbiologyen
dc.subjectMicrobial Pathogensen
dc.subjectBacterial Pathogensen
dc.subjectPathology and Laboratory Medicineen
dc.subjectPathogensen
dc.subjectDrug Interactionsen
dc.subjectMaterials by Attributeen
dc.subjectPigmentsen
dc.subjectDyesen
dc.subjectFluorescent Dyesen
dc.subjectBiology and life sciencesen
dc.subjectBiochemistryen
dc.subjectNucleic acidsen
dc.subjectRNAen
dc.subjectMessenger RNAen
dc.titleSequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacyen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalPLoS Biologyen
dash.depositing.authorWong, Michaelen_US
dc.date.available2016-11-18T20:04:57Z
dc.identifier.doi10.1371/journal.pbio.1002552*
dash.contributor.affiliatedWong, Michael


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record