A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance

DSpace/Manakin Repository

A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance

Citable link to this page

 

 
Title: A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
Author: Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura ORCID  0000-0003-4340-0656 ; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E.; Lecker, Stewart H.; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

Note: Order does not necessarily reflect citation order of authors.

Citation: Jang, C., S. F. Oh, S. Wada, G. C. Rowe, L. Liu, M. C. Chan, J. Rhee, et al. 2016. “A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance.” Nature medicine 22 (4): 421-426. doi:10.1038/nm.4057. http://dx.doi.org/10.1038/nm.4057.
Full Text & Related Files:
Abstract: Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.1–3 Insulin resistance in skeletal muscle stems from excess accumulation of lipid species4, a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
Published Version: doi:10.1038/nm.4057
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949205/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:29407669
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters