Crystal structure of a substrate-engaged SecY protein-translocation channel

DSpace/Manakin Repository

Crystal structure of a substrate-engaged SecY protein-translocation channel

Citable link to this page


Title: Crystal structure of a substrate-engaged SecY protein-translocation channel
Author: Li, Long; Park, Eunyong; Ling, JingJing; Ingram, Jessica; Ploegh, Hidde; Rapoport, Tom A.

Note: Order does not necessarily reflect citation order of authors.

Citation: Li, Long, Eunyong Park, JingJing Ling, Jessica Ingram, Hidde Ploegh, and Tom A. Rapoport. 2016. “Crystal structure of a substrate-engaged SecY protein-translocation channel.” Nature 531 (7594): 395-399. doi:10.1038/nature17163.
Full Text & Related Files:
Abstract: Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid1-10. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation 11. How a translocating polypeptide inserts into the channel is uncertain, as cryo-EM structures of the active channel have a relatively low resolution (~10Å) or are of insufficient quality 6-8. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The C-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.
Published Version: doi:10.1038/nature17163
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search