Negative frequency‐dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population

DSpace/Manakin Repository

Negative frequency‐dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population

Citable link to this page

 

 
Title: Negative frequency‐dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population
Author: Healey, David; Axelrod, Kevin; Gore, Jeff

Note: Order does not necessarily reflect citation order of authors.

Citation: Healey, David, Kevin Axelrod, and Jeff Gore. 2016. “Negative frequency‐dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population.” Molecular Systems Biology 12 (8): 877. doi:10.15252/msb.20167033. http://dx.doi.org/10.15252/msb.20167033.
Full Text & Related Files:
Abstract: Abstract Genetically identical cells in microbial populations often exhibit a remarkable degree of phenotypic heterogeneity even in homogenous environments. Such heterogeneity is commonly thought to represent a bet‐hedging strategy against environmental uncertainty. However, evolutionary game theory predicts that phenotypic heterogeneity may also be a response to negative frequency‐dependent interactions that favor rare phenotypes over common ones. Here we provide experimental evidence for this alternative explanation in the context of the well‐studied yeast GAL network. In an environment containing the two sugars glucose and galactose, the yeast GAL network displays stochastic bimodal activation. We show that in this mixed sugar environment, GAL‐ON and GAL‐OFF phenotypes can each invade the opposite phenotype when rare and that there exists a resulting stable mix of phenotypes. Consistent with theoretical predictions, the resulting stable mix of phenotypes is not necessarily optimal for population growth. We find that the wild‐type mixed strategist GAL network can invade populations of both pure strategists while remaining uninvasible by either. Lastly, using laboratory evolution we show that this mixed resource environment can directly drive the de novo evolution of clonal phenotypic heterogeneity from a pure strategist population. Taken together, our results provide experimental evidence that negative frequency‐dependent interactions can underlie the phenotypic heterogeneity found in clonal microbial populations.
Published Version: doi:10.15252/msb.20167033
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119493/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:29626182
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters