Show simple item record

dc.contributor.authorTaylor, Michaelen_US
dc.contributor.authorGözen, Irepen_US
dc.contributor.authorPatel, Samiren_US
dc.contributor.authorJesorka, Aldoen_US
dc.contributor.authorBertoldi, Katiaen_US
dc.date.accessioned2016-12-02T15:25:56Z
dc.date.issued2016en_US
dc.identifier.citationTaylor, Michael, Irep Gözen, Samir Patel, Aldo Jesorka, and Katia Bertoldi. 2016. “Peridynamic Modeling of Ruptures in Biomembranes.” PLoS ONE 11 (11): e0165947. doi:10.1371/journal.pone.0165947. http://dx.doi.org/10.1371/journal.pone.0165947.en
dc.identifier.issn1932-6203en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:29626186
dc.description.abstractWe simulate the formation of spontaneous ruptures in supported phospholipid double bilayer membranes, using peridynamic modeling. Experiments performed on spreading double bilayers typically show two distinct kinds of ruptures, floral and fractal, which form spontaneously in the distal (upper) bilayer at late stages of double bilayer formation on high energy substrates. It is, however, currently unresolved which factors govern the occurrence of either rupture type. Variations in the distance between the two bilayers, and the occurrence of interconnections (“pinning sites”) are suspected of contributing to the process. Our new simulations indicate that the pinned regions which form, presumably due to Ca2+ ions serving as bridging agent between the distal and the proximal bilayer, act as nucleation sites for the ruptures. Moreover, assuming that the pinning sites cause a non-zero shear modulus, our simulations also show that they change the rupture mode from floral to fractal. At zero shear modulus the pores appear to be circular, subsequently evolving into floral pores. With increasing shear modulus the pore edges start to branch, favoring fractal morphologies. We conclude that the pinning sites may indirectly determine the rupture morphology by contributing to shear stress in the distal membrane.en
dc.language.isoen_USen
dc.publisherPublic Library of Scienceen
dc.relation.isversionofdoi:10.1371/journal.pone.0165947en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102442/pdf/en
dash.licenseLAAen_US
dc.subjectPhysical Sciencesen
dc.subjectMathematicsen
dc.subjectGeometryen
dc.subjectFractalsen
dc.subjectBiology and Life Sciencesen
dc.subjectBiochemistryen
dc.subjectLipidsen
dc.subjectCell Biologyen
dc.subjectCellular Structures and Organellesen
dc.subjectCell Membranesen
dc.subjectBiochemical Simulationsen
dc.subjectComputational Biologyen
dc.subjectPhysicsen
dc.subjectClassical Mechanicsen
dc.subjectDeformationen
dc.subjectDamage Mechanicsen
dc.subjectSimulation and Modelingen
dc.subjectPhospholipidsen
dc.subjectLipid Bilayeren
dc.titlePeridynamic Modeling of Ruptures in Biomembranesen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalPLoS ONEen
dash.depositing.authorBertoldi, Katiaen_US
dc.date.available2016-12-02T15:25:56Z
dc.identifier.doi10.1371/journal.pone.0165947*
dash.contributor.affiliatedBertoldi, Katia


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record