Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History

DSpace/Manakin Repository

Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History

Citable link to this page

 

 
Title: Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History
Author: Brooks, Andrew W.; Kohl, Kevin D.; Brucker, Robert M.; van Opstal, Edward J.; Bordenstein, Seth R.

Note: Order does not necessarily reflect citation order of authors.

Citation: Brooks, Andrew W., Kevin D. Kohl, Robert M. Brucker, Edward J. van Opstal, and Seth R. Bordenstein. 2016. “Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History.” PLoS Biology 14 (11): e2000225. doi:10.1371/journal.pbio.2000225. http://dx.doi.org/10.1371/journal.pbio.2000225.
Full Text & Related Files:
Abstract: Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings. First, intraspecific microbiota variation is consistently less than interspecific microbiota variation, and microbiota-based models predict host species origin with high accuracy across the dataset. Interestingly, the age of host clade divergence positively associates with the degree of microbial community distinguishability between species within the host clades, spanning recent host speciation events (~1 million y ago) to more distantly related host genera (~108 million y ago). Second, topological congruence analyses of each group's complete phylogeny and microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective of host clade age or taxonomy. Third, consistent with selection on host–microbiota interactions driving phylosymbiosis, there are survival and performance reductions when interspecific microbiota transplants are conducted between closely related and divergent host species pairs. Overall, these findings indicate that the composition and functional effects of an animal's microbial community can be closely allied with host evolution, even across wide-ranging timescales and diverse animal systems reared under controlled conditions.
Published Version: doi:10.1371/journal.pbio.2000225
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115861/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:29739175
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters