Osmotic-Pressure-Mediated Control of Structural Colors of Photonic Capsules

DSpace/Manakin Repository

Osmotic-Pressure-Mediated Control of Structural Colors of Photonic Capsules

Citable link to this page

 

 
Title: Osmotic-Pressure-Mediated Control of Structural Colors of Photonic Capsules
Author: Choi, Tae Min; Park, Jin-Gyu; Kim, Young-Seok; Manoharan, Vinothan N.; Kim, Shin-Hyun

Note: Order does not necessarily reflect citation order of authors.

Citation: Choi, Tae Min, Jin-Gyu Park, Young-Seok Kim, Vinothan N. Manoharan, and Shin-Hyun Kim. 2015. “Osmotic-Pressure-Mediated Control of Structural Colors of Photonic Capsules.” Chemistry of Materials 27 (3) (February 10): 1014–1020. doi:10.1021/cm5043292.
Full Text & Related Files:
Abstract: Crystalline or glassy materials made of colloidal nanoparticles show distinctive photonic effects; the crystals exhibit sparkling colors with strong iridescence, while the glasses show noniridescent colors. Both colors are the results of constructive interference of the reflected light by the nonadsorbing nanostructures. Such colored materials have potential applications as nonfading colorants in reflective color displays, optical sensors, coatings, and cosmetics. All of these applications require granular format of the nanostructures; however, precise control of the nanostructures from amorphous to crystalline over the submillimeter length scale remains challenging. Here, we present micrometer-level control of photonic nanostructures confined in microcapsules through osmotic-pressure-mediated concentration. We encapsulate aqueous suspensions of colloidal particles using double-emulsion drops with ultrathin layers of photocurable resin. The microcapsules are then isotropically compressed by imposing a positive osmotic pressure difference that forces the water out through the thin resin membrane. We find that the internal nanostructure of our photonic microcapsules can be kinetically controlled from crystalline to amorphous; slow concentration in small pressure gradients yields colloidal crystals with sparkling color patterns, whereas fast concentration in large pressure gradients yields glassy packing with only short-range order, which show uniform color with little iridescence. By polymerizing the thin monomeric shell, we permanently fix these nanostructures. Our findings provide new insights into the design and synthesis of optical materials with controlled structural colors.
Published Version: 10.1021/cm5043292
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:29997248
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters