Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy

DSpace/Manakin Repository

Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy

Citable link to this page


Title: Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy
Author: Aguet, François; Upadhyayula, Srigokul; Gaudin, Raphaël; Chou, Yi-ying; Cocucci, Emanuele; He, Kangmin; Chen, Bi-Chang; Mosaliganti, Kishore; Pasham, Mithun; Skillern, Wesley; Legant, Wesley R.; Liu, Tsung-Li; Findlay, Greg; Marino, Eric; Danuser, Gaudenz; Megason, Sean; Betzig, Eric; Kirchhausen, Tom

Note: Order does not necessarily reflect citation order of authors.

Citation: Aguet, F., S. Upadhyayula, R. Gaudin, Y. Chou, E. Cocucci, K. He, B. Chen, et al. 2016. “Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy.” Molecular Biology of the Cell 27 (22): 3418-3435. doi:10.1091/mbc.E16-03-0164.
Full Text & Related Files:
Abstract: Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies.
Published Version: doi:10.1091/mbc.E16-03-0164
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search