A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes

DSpace/Manakin Repository

A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes

Citable link to this page

 

 
Title: A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes
Author: Ravichandran, Kanchana R.; Taguchi, Alexander T.; Wei, Yifeng; Tommos, Cecilia; Nocera, Daniel G.; Stubbe, JoAnne

Note: Order does not necessarily reflect citation order of authors.

Citation: Ravichandran, Kanchana R., Alexander T. Taguchi, Yifeng Wei, Cecilia Tommos, Daniel G. Nocera, and JoAnne Stubbe. 2016. “A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes.” Journal of the American Chemical Society 138 (41): 13706-13716. doi:10.1021/jacs.6b08200. http://dx.doi.org/10.1021/jacs.6b08200.
Full Text & Related Files:
Abstract: Escherichia coli class Ia ribonucleotide reductase (RNR) converts ribonucleotides to deoxynucleotides. A diferric-tyrosyl radical (Y122•) in one subunit (β2) generates a transient thiyl radical in another subunit (α2) via long-range radical transport (RT) through aromatic amino acid residues (Y122 ⇆ [W48] ⇆ Y356 in β2 to Y731 ⇆ Y730 ⇆ C439 in α2). Equilibration of Y356•, Y731•, and Y730• was recently observed using site specifically incorporated unnatural tyrosine analogs; however, equilibration between Y122• and Y356• has not been detected. Our recent report of Y356• formation in a kinetically and chemically competent fashion in the reaction of β2 containing 2,3,5-trifluorotyrosine at Y122 (F3Y122•-β2) with α2, CDP (substrate), and ATP (effector) has now afforded the opportunity to investigate equilibration of F3Y122• and Y356•. Incubation of F3Y122•-β2, Y731F-α2 (or Y730F-α2), CDP, and ATP at different temperatures (2–37 °C) provides ΔE°′(F3Y122•–Y356•) of 20 ± 10 mV at 25 °C. The pH dependence of the F3Y122• ⇆ Y356• interconversion (pH 6.8–8.0) reveals that the proton from Y356 is in rapid exchange with solvent, in contrast to the proton from Y122. Insertion of 3,5-difluorotyrosine (F2Y) at Y356 and rapid freeze-quench EPR analysis of its reaction with Y731F-α2, CDP, and ATP at pH 8.2 and 25 °C shows F2Y356• generation by the native Y122•. FnY-RNRs (n = 2 and 3) together provide a model for the thermodynamic landscape of the RT pathway in which the reaction between Y122 and C439 is ∼200 meV uphill.
Published Version: doi:10.1021/jacs.6b08200
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224885/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:30371149
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters