Spatial and Temporal Association of As and Fe Species on Aquatic Plant Roots

DSpace/Manakin Repository

Spatial and Temporal Association of As and Fe Species on Aquatic Plant Roots

Citable link to this page


Title: Spatial and Temporal Association of As and Fe Species on Aquatic Plant Roots
Author: Francis, Scott; Hansel, Colleen; La Force, Matthew J.; Sutton, Steve

Note: Order does not necessarily reflect citation order of authors.

Citation: Hansel, Colleen M., Matthew J. La Force, Scott Fendorf, and Steve Sutton. 2002. Spatial and temporal association of As and Fe species on aquatic plant roots. Environmental Science & Technology 36(9): 1988-1994.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: The formation of an Fe(III) precipitate (plaque) on the surface of aquatic plant roots may provide a means of attenuation and external exclusion of metals. Presently, the mechanisms of metal(loid) sequestration at the root surface are unresolved. Accordingly, we investigated the mechanisms of Fe and As attenuation and association on the roots of two common aquatic plant species, Phalaris arundinacea (reed canarygrass) and Typhalatifolia (cattail) using X-ray absorption spectroscopy and X-ray fluorescence microtomography. Iron plaque of both P. arundinacea and T. latifoliaconsist predominantly of hydrated iron oxides (ferrihydrite) with lesser amounts of goethite and minor levels of siderite. Typha latifolia, however, differs from P. arundinacea by having a significant contribution from lepidocrocite as well as a greater proportion of crystalline minerals. Coexistence of goethite and lepidocrocite suggests the presence of chemically diverse microenvironments at the root surface. Arsenic exists as a combination of two sorbed As species, being comprised predominantly of arsenate- (∼82%) with lesser amounts (∼18%) of As-(III)-iron (hydr)oxide complexes. Furthermore, both spatial and temporal correlations between As and Fe on the root surfaces were observed. While the iron (hydr)oxide deposits form a continuous surficial rind around the root, As exists in isolated regions on the exterior and interior of the root. Root surface-associated As generally corresponds to regions of enhanced Fe levels and may therefore occur as a direct consequence of Fe phase heterogeneity and preferential As sorption reactions.
Published Version:
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search