reGenotyper: Detecting mislabeled samples in genetic data

View/ Open
Author
Zych, Konrad
Snoek, Basten L.
Elvin, Mark
Rodriguez, Miriam
Van der Velde, K. Joeri
Arends, Danny
Swertz, Morris A.
Poulin, Gino
Kammenga, Jan E.
Breitling, Rainer
Jansen, Ritsert C.
Li, Yang
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1371/journal.pone.0171324Metadata
Show full item recordCitation
Zych, K., B. L. Snoek, M. Elvin, M. Rodriguez, K. J. Van der Velde, D. Arends, H. Westra, et al. 2017. “reGenotyper: Detecting mislabeled samples in genetic data.” PLoS ONE 12 (2): e0171324. doi:10.1371/journal.pone.0171324. http://dx.doi.org/10.1371/journal.pone.0171324.Abstract
In high-throughput molecular profiling studies, genotype labels can be wrongly assigned at various experimental steps; the resulting mislabeled samples seriously reduce the power to detect the genetic basis of phenotypic variation. We have developed an approach to detect potential mislabeling, recover the “ideal” genotype and identify “best-matched” labels for mislabeled samples. On average, we identified 4% of samples as mislabeled in eight published datasets, highlighting the necessity of applying a “data cleaning” step before standard data analysis.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5305221/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:31731722
Collections
- HMS Scholarly Articles [17714]
Contact administrator regarding this item (to report mistakes or request changes)