Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

DSpace/Manakin Repository

Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

Citable link to this page

 

 
Title: Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry
Author: Epstein, A K; Hochbaum, A I; Kim, Philseok; Aizenberg, Joanna

Note: Order does not necessarily reflect citation order of authors.

Citation: Epstein, A K, A I Hochbaum, Philseok Kim, and J Aizenberg. 2011. “Control of Bacterial Biofilm Growth on Surfaces by Nanostructural Mechanics and Geometry.” Nanotechnology 22 (49) (November 21): 494007. doi:10.1088/0957-4484/22/49/494007.
Full Text & Related Files:
Abstract: Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the ‘softness’ of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.
Published Version: doi:10.1088/0957-4484/22/49/494007
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:31756449
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters