A Moisture-Stratiform Instability for Convectively Coupled Waves

DSpace/Manakin Repository

A Moisture-Stratiform Instability for Convectively Coupled Waves

Citable link to this page


Title: A Moisture-Stratiform Instability for Convectively Coupled Waves
Author: Kuang, Zhiming
Citation: Kuang, Zhiming M. 2008. A moisture-stratiform instability for convectively coupled waves. Journal of Atmospheric Sciences 65, no. 3: 834-854.
Full Text & Related Files:
Abstract: A simple model of two vertical modes is constructed and analyzed to reveal the basic instability mechanisms of convectively coupled waves. The main novelty of this model is a convective parameterization based on the quasi-equilibrium concept and simplified for a model of two vertical modes. It hypothesizes 1) the approximate invariance of the difference between saturation moist static energy in the lower half of the troposphere and moist static energy in the subcloud layer, regardless of free troposphere humidity, and 2) that variations in the depth of convection are determined by moisture-deficit variations in the midtroposphere. Physical arguments for such a treatment are presented. For realistic model parameters chosen based on cloud system resolving model simulations (CSRMs) of an earlier study, the model produces unstable waves at wavelengths and with structures that compare well with the CSRM simulations and observations.

A moisture-stratiform instability and a direct-stratiform instability are identified as the main instability mechanisms in the model. The former relies on the effect of midtroposphere humidity on the depth of convection. The latter relies on the climatological mean convective heating profile being top heavy, and it is identified to be the same as the stratiform instability mechanism proposed by B. E. Mapes. The moisture-stratiform instability appears to be the main instability mechanism for the convectively coupled wave development in the CSRM simulations. The finite response time of convection has a damping effect on the waves that is stronger at high wavenumbers. The net moistening effect of the second-mode convective heating also damps the waves, but more strongly at low wavenumbers. These effects help to shape the growth rate curve so that the most unstable waves are of a few thousand kilometers in scale.
Published Version: http://dx.doi.org/10.1175/2007JAS2444.1
Other Sources: http://www.people.fas.harvard.edu/~kuang/wave_simple_08JAS.pdf
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3203007
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search