Small Molecules Efficiently Direct Endodermal Differentiation of Mouse and Human Embryonic Stem Cells
View/ Open
Small Molecules Efficiently Direct Endodermal Differentiation of Mouse and Human Embryonic Stem Cells_Borowiak_Maehr_SChen_AChen_Tang_Fox_Melton_0.pdf (2.127Mb)
Access Status
Full text of the requested work is not available in DASH at this time ("dark deposit"). For more information on dark deposits, see our FAQ.Author
Borowiak, Malgorzata
Maehr, René
Chen, Shuibing
Chen, Alice E.
Tang, Weiping
Fox, Julia L.
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1016/j.stem.2009.01.014Metadata
Show full item recordCitation
Borowiak, Malgorzata, René Maehr, Shuibing Chen, Alice E. Chen, Weiping Tang, Julia L. Fox, Stuart L. Schreiber, and Douglas A. Melton. 2009. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4(4): 348-358.Abstract
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives, including lung, liver, and pancreas, are of interest for regenerative medicine, but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds, two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm, a higher efficiency than that achieved by Activin A or Nodal, commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers, can participate in normal development when injected into developing embryos, and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32116971
Collections
- FAS Scholarly Articles [17582]
Contact administrator regarding this item (to report mistakes or request changes)
Comments made during the workflow steps
emailed 12/12/13 Per Sherpa Romeo cannot post publisher's version. In QSDB. Melton emailed 2017-02-18 MM meta.dark