Show simple item record

dc.contributor.authorBerg, Howard
dc.date.accessioned2009-08-19T14:42:22Z
dc.date.issued1965
dc.identifier.citationBerg, Howard C. 1965. Spin exchange and surface relaxation in the atomic hydrogen maser. Physical Review 137(6A): A1621-A1634.en
dc.identifier.issn0556-2791en
dc.identifier.issn0096-8269en
dc.identifier.issn0096-8250en
dc.identifier.issn0031-899Xen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:3219931
dc.description.abstractAn experiment using the atomic-hydrogen maser is described which confirms several predictions of the theory of spin exchange and which provides new information on the spin relaxation of hydrogen at solid surfaces. Atoms in the (F=1, mF=0) state, which are confined to a storage bulb, are put into a coherent radiating state by a microwave pulse at the delta mF=0 hyperfine frequency. The initial amplitude and the decay rate of the induced signal are measured. Atoms or molecules containing unpaired electrons are added to the storage bulb at various constant rates, and the pulse measurements are repeated. In this manner, the rate at which spin-exchange collisions decrease the oscillating dipole movement of the radiating gas, a T2 process is compared with the rate at which the same collisions decrease the population difference (F=1, mF=0)-(F=0, mF=0), a T1 process. It is shown for a spin-exchange theory which neglects spin-orbit coupling and all direct magnetic interactions that the ratio of the relaxation times, T2/T1, is independent of all collision parameters. For collisions between atomic hydrogen and atomic deuterium, nitric oxide, and molecular oxygen, the predicted T2/T1 ratios are 4/3. For hydrogen-hydrogen collisions, the predicted T2/T1 ratio is 2. The deuterium, nitric oxide, and oxygen results agree with the theory, but the hydrogen results are at least 5% llow. The magnitude of the discrepancy depends upon the composition of the storage-bulb wall, and the error is explained by a wall relaxation process which has a rate proportional to the hydrogen density. A second wall relaxation process is observed with a rate independent of the hydrogen density, but which increases rapidly with temperature. These phenomena are examined in detail for a series of hydrocarbon, fluorocarbon, and mixed hydro-fluorocarbon surfaces. Approximate experimental hydrogen-radiation decay-rate cross sections also are given for a series of molecular gases.en
dc.description.sponsorshipMolecular and Cellular Biologyen
dc.language.isoen_USen
dc.publisherAmerican Physical Societyen
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRev.137.A1621en
dash.licenseLAA
dc.titleSpin Exchange and Surface Relaxation in the Atomic Hydrogen Maseren
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalPhysical Reviewen
dash.depositing.authorBerg, Howard
dc.identifier.doi10.1103/PhysRev.137.A1621*
dash.contributor.affiliatedBerg, Howard


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record