High-Throughput Cell Transplantation Establishes That Tumor-Initiating Cells Are Abundant in Zebrafish T-Cell Acute Lymphoblastic Leukemia
View/ Open
3459061.pdf (390.2Kb)
Access Status
Full text of the requested work is not available in DASH at this time ("dark deposit"). For more information on dark deposits, see our FAQ.Author
Smith, Alexandra C. H.
Raimondi, Aubrey R.
Salthouse, Chris D.
Mizgirev, Igor V.
de Jong, Jill L. O.
Revskoy, Sergei
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1182/blood-2009-10-246488Metadata
Show full item recordCitation
Smith, Alexandra C. H., Aubrey R. Raimondi, Chris D. Salthouse, Myron S. Ignatius, Jessica S. Blackburn, Igor V. Mizgirev, Narie Y. Storer, et al. 2010. High-Throughput Cell Transplantation Establishes That Tumor-Initiating Cells Are Abundant in Zebrafish T-Cell Acute Lymphoblastic Leukemia. Blood 115, no. 16: 3296–3303.Abstract
Self-renewal is a feature of cancer and can be assessed by cell transplantation into immune-compromised or immune-matched animals. However, studies in zebrafish have been severely limited by lack of these reagents. Here, Myc-induced T-cell acute lymphoblastic leukemias (T-ALLs) have been made in syngeneic, clonal zebrafish and can be transplanted into sibling animals without the need for immune suppression. These studies show that self-renewing cells are abundant in T-ALL and comprise 0.1% to 15.9% of the T-ALL mass. Large-scale single-cell transplantation experiments established that T-ALLs can be initiated from a single cell and that leukemias exhibit wide differences in tumor-initiating potential. T-ALLs also can be introduced into clonal-outcrossed animals, and T-ALLs arising in mixed genetic backgrounds can be transplanted into clonal recipients without the need for major histocompatibility complex matching. Finally, high-throughput imaging methods are described that allow large numbers of fluorescent transgenic animals to be imaged simultaneously, facilitating the rapid screening of engrafted animals. Our experiments highlight the large numbers of zebrafish that can be experimentally assessed by cell transplantation and establish new high-throughput methods to functionally interrogate gene pathways involved in cancer self-renewal.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858492/Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33010416
Collections
- FAS Scholarly Articles [17574]
Contact administrator regarding this item (to report mistakes or request changes)
Comments made during the workflow steps
FAR 2011 Zon emailed 2016-04-22 MM Zon emailed 2017-02-20 MM meta.dark