Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function

DSpace/Manakin Repository

Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function

Citable link to this page

 

 
Title: Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function
Author: Thibaut, Aurore; Simis, Marcel; Battistella, Linamara Rizzo; Fanciullacci, Chiara; Bertolucci, Federica; Huerta-Gutierrez, Rodrigo; Chisari, Carmelo; Fregni, Felipe

Note: Order does not necessarily reflect citation order of authors.

Citation: Thibaut, Aurore, Marcel Simis, Linamara Rizzo Battistella, Chiara Fanciullacci, Federica Bertolucci, Rodrigo Huerta-Gutierrez, Carmelo Chisari, and Felipe Fregni. 2017. “Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function.” Frontiers in Neurology 8 (1): 187. doi:10.3389/fneur.2017.00187. http://dx.doi.org/10.3389/fneur.2017.00187.
Full Text & Related Files:
Abstract: What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation—TMS) and brain oscillations (electroencephalography—EEG). In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke) were recruited in two sites. We analyzed TMS measures (i.e., motor threshold—MT—of the affected and unaffected sides) and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres) and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery.
Published Version: doi:10.3389/fneur.2017.00187
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423894/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:33029779
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters