Tat-haFGF14–154 Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway

DSpace/Manakin Repository

Tat-haFGF14–154 Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway

Citable link to this page

 

 
Title: Tat-haFGF14–154 Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway
Author: Meng, Tian; Cao, Qin; Lei, Peng; Bush, Ashley I.; Xiang, Qi; Su, Zhijian; He, Xiang; Rogers, Jack T.; Chiu, Ing-Ming; Zhang, Qihao; Huang, Yadong

Note: Order does not necessarily reflect citation order of authors.

Citation: Meng, T., Q. Cao, P. Lei, A. I. Bush, Q. Xiang, Z. Su, X. He, et al. 2017. “Tat-haFGF14–154 Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway.” Molecular Therapy. Nucleic Acids 7 (1): 439-452. doi:10.1016/j.omtn.2017.05.004. http://dx.doi.org/10.1016/j.omtn.2017.05.004.
Full Text & Related Files:
Abstract: Acid fibroblast growth factor (aFGF) has shown neuroprotection in Alzheimer’s disease (AD) models in previous studies, yet its mechanism is still uncertain. Here we report that the efficacy of Tat-haFGF14–154 is markedly increased when loaded cationic liposomes for intranasal delivery are intranasally administered to APP/PS1 mice. Our results demonstrated that liposomal Tat-haFGF14–154 treatment significantly ameliorated behavioral deficits, relieved brain Aβ burden, and increased the expression and activity of disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) in the brain. Tat-haFGF14–154 antagonized Aβ1–42-induced cell death and structural damage in rat primary neurons in an ADAM10-dependent manner, which, in turn, was promoted by the activation of XBP1 splicing and modulated by the PI3K-CREB pathway. Both knockdown of ADAM10 and inhibition of PI3K (LY294002) negated Tat-haFGF14–154 rescue. Thus, Tat-haFGF14–154 activates the IRE1α/XBP1 pathway of the unfolded protein response (UPR) against the endoplasmic reticulum (ER) stress induced by Aβ, and, subsequently, the nuclear translocation of spliced XBP1 (XBP1s) promotes transcription of ADAM10. These results highlight the important role of ADAM10 and its activation through the PI3K-CREB-IRE1α/XBP1 pathway as a key factor in the mechanism of neuroprotection for Tat-haFGF14–154.
Published Version: doi:10.1016/j.omtn.2017.05.004
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443968/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:33029798
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters