Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification

DSpace/Manakin Repository

Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification

Citable link to this page

 

 
Title: Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification
Author: Dey, D.; Bagarova, J.; Hatsell, S. J.; Armstrong, K. A.; Huang, L.; Ermann, J.; Vonner, A. J.; Shen, Y.; Mohedas, Agustin Humberto; Lee, A.; Eekhoff, E. M. W.; van Schie, A.; Demay, Marie Bernadette; Keller, C.; Wagers, Amy Jo; Economides, A. N.; Yu, P. B.

Note: Order does not necessarily reflect citation order of authors.

Citation: Dey, D., J. Bagarova, S. J. Hatsell, K. A. Armstrong, L. Huang, J. Ermann, A. J. Vonner, et al. 2016. “Two Tissue-Resident Progenitor Lineages Drive Distinct Phenotypes of Heterotopic Ossification.” Science Translational Medicine 8 (366) (November 23): 366ra163–366ra163. doi:10.1126/scitranslmed.aaf1090.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: Fibrodysplasia ossificans progressiva (FOP), a congenital HO syndrome caused by gain-of-function mutations of bone morphogenetic protein (BMP) type I receptor ACVR1, manifests with progressive ossification of diverse tissues including skeletal muscles, tendons, ligaments, fascia and joints. HO can occur in discrete flares, often triggered by injury or inflammation, or may progress incrementally without identified triggers. Mice harboring an Acvr1R206H knock-in allele recapitulated the phenotypic spectrum of FOP, including injuryresponsive intramuscular HO, and spontaneous articular, tendon and ligament ossification. HO in these distinct sites was formed by two anatomically distinct progenitor lineages: A muscle-resident interstitial Mx1+Sca1+LinPDGFRα+ population which was sufficient to facilitate intramuscular, injury-dependent endochondral HO, and an Scx+Sca1+Lin-PDGFRα+tendon-derived progenitor which was sufficient to initiate ligament and articular endochondral HO without injury. The cell-autonomous effects of Acvr1R206H in both of these lineages promoted heterotopic chondrogenesis, and conferred to cells abnormal gain of BMP signaling and endochondral differentiation in response to Activin A. Both injury-dependent intramuscular and spontaneous ligament HO in Acvr1R206H knock-in mice were effectively controlled by the selective ACVR1 inhibitor LDN-212854. The diverse spatiotemporal manifestations of HO in FOP are rooted in cell-autonomous effects of dysregulated ACVR1 signaling in multiple non-overlapping tissue-resident progenitors, with direct implications for therapies designed to modify their recruitment or plasticity.
Published Version: 10.1126/scitranslmed.aaf1090
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:33155518
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters