Show simple item record

dc.contributor.authorOlshansky, Lisa
dc.contributor.authorStubbe, JoAnne
dc.contributor.authorNocera, Daniel
dc.date.accessioned2017-07-18T20:08:49Z
dc.date.issued2016
dc.identifierQuick submit: 2017-05-11T13:44:38-0400
dc.identifier.citationOlshansky, Lisa, JoAnne Stubbe, and Daniel G. Nocera. 2016. “Charge Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductase.” Journal of the American Chemical Society 138 (4) (February 3): 1196–1205. doi:10.1021/jacs.5b09259.en_US
dc.identifier.issn0002-7863en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:33464251
dc.description.abstractRibonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides to provide the monomeric building blocks for DNA replication and repair. Nucleotide reduction occurs by way of multi-step proton-coupled electron transfer (PCET) over a pathway of redox active amino acids spanning ~ 35 Å and two subunits (α2 and β2). Despite the fact that PCET in RNR is rapid, slow conformational changes mask kinetic examination of these steps. As such, we have pioneered methodology in which site-specific incorporation of a [ReI] photooxidant on the surface of the β2 subunit (photoβ2) allows photochemical oxidation of the adjacent PCET pathway residue β-Y356 and time-resolved spectroscopic observation of the ensuing reactivity. A series of photoβ2s capable of performing photoinitiated substrate turnover have been prepared in which four different fluorotyrosines (FnYs) are incorporated in place of β-Y356. The FnYs are deprotonated under biological conditions, undergo oxidation by electron transfer (ET) and provide a means by which to vary the ET driving force (ΔG°) with minimal additional perturbations across the series. We have used these features to map the correlation between ΔG° and kET both with and without the fully assembled photoRNR complex. The photooxidation of FnY356 within the α/β subunit interface occurs within the Marcus inverted region with a reorganization energy of λ ≈ 1 eV. We also observe enhanced electronic coupling between donor and acceptor (HDA) in the presence of an intact PCET pathway. Additionally, we have investigated the dynamics of proton transfer (PT) by a variety of methods including dependencies on solvent isotopic composition, buffer concentration, and pH. We present evidence for the role of α2 in facilitating PT during β-Y356 photooxidation; PT occurs by way of readily exchangeable positions and within a relatively “tight” subunit interface. These findings show that RNR controls ET by lowering λ, raising HDA, and directing PT both within and between individual polypeptide subunits.en_US
dc.description.sponsorshipChemistry and Chemical Biologyen_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionof10.1021/jacs.5b09259en_US
dc.relation.hasversionhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924928/en_US
dash.licenseOAP
dc.titleCharge Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductaseen_US
dc.typeJournal Articleen_US
dc.date.updated2017-05-11T17:44:06Z
dc.description.versionAccepted Manuscripten_US
dc.relation.journalJournal of the American Chemical Societyen_US
dash.depositing.authorNocera, Daniel
dc.date.available2016
dc.date.available2017-07-18T20:08:49Z
dc.identifier.doi10.1021/jacs.5b09259*
dash.contributor.affiliatedOlshansky, Lisa
dash.contributor.affiliatedNocera, Daniel


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record