Global Source–Receptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios

DSpace/Manakin Repository

Global Source–Receptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios

Citable link to this page

 

 
Title: Global Source–Receptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios
Author: Corbitt, Elizabeth Sturges; Jacob, Daniel James; Holmes, Christopher D.; Streets, David G.; Sunderland, Elynor M

Note: Order does not necessarily reflect citation order of authors.

Citation: Corbitt, Elizabeth S., Daniel J. Jacob, Christopher D. Holmes, David G. Streets, and Elsie M. Sunderland. 2011. Global Source–Receptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios. Environ. Sci. Technol. 45, no. 24: 10477–10484. doi:10.1021/es202496y.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: Global policies regulating anthropogenic mercury require an understanding of the relationship between emitted and deposited mercury on intercontinental scales. Here, we examine source–receptor relationships for present-day conditions and four 2050 IPCC scenarios encompassing a range of economic development and environmental regulation projections. We use the GEOS-Chem global model to track mercury from its point of emission through rapid cycling in surface ocean and land reservoirs to its accumulation in longer lived ocean and soil pools. Deposited mercury has a local component (emitted HgII, lifetime of 3.7 days against deposition) and a global component (emitted Hg0, lifetime of 6 months against deposition). Fast recycling of deposited mercury through photoreduction of HgII and re-emission of Hg0 from surface reservoirs (ice, land, surface ocean) increases the effective lifetime of anthropogenic mercury to 9 months against loss to legacy reservoirs (soil pools and the subsurface ocean). This lifetime is still sufficiently short that source–receptor relationships have a strong hemispheric signature. Asian emissions are the largest source of anthropogenic deposition to all ocean basins, though there is also regional source influence from upwind continents. Current anthropogenic emissions account for only about one-third of mercury deposition to the global ocean with the remainder from natural and legacy sources. However, controls on anthropogenic emissions would have the added benefit of reducing the legacy mercury re-emitted to the atmosphere. Better understanding is needed of the time scales for transfer of mercury from active pools to stable geochemical reservoirs.
Published Version: doi:10.1021/es202496y
Other Sources: http://acmg.seas.harvard.edu/publications/2011/corbitt2011.pdf
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:33490984
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters