Equivariant Weiss Calculus and Loops of Stiefel Manifolds

DSpace/Manakin Repository

Equivariant Weiss Calculus and Loops of Stiefel Manifolds

Citable link to this page

 

 
Title: Equivariant Weiss Calculus and Loops of Stiefel Manifolds
Author: Tynan, Philip Douglas
Citation: Tynan, Philip Douglas. 2016. Equivariant Weiss Calculus and Loops of Stiefel Manifolds. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
Full Text & Related Files:
Abstract: In the mid 1980s, Steve Mitchell and Bill Richter produced a filtration of the Stiefel manifolds O(V ;W) and U(V ;W) of orthogonal and unitary, respectively, maps V -> V ⊕W stably split as a wedge sum of Thom spaces defined over Grassmanians. Additionally, they produced a similar filtration for loops on SU(V), with a similar splitting. A few years later, Michael Crabb made explicit the equivariance of the Stiefel manifold splittings and conjectured that the splitting of the loop space was equivariant as well. However, it has long been unknown whether the loop space of the real Steifel manifold (or even the special case of ΩSO_n) has a similar splitting.

In the mid 1980s, Steve Mitchell and Bill Richter produced a filtration of the Stiefel manifolds O(V ;W) and U(V ;W) of orthogonal and unitary, respectively, maps V → V ⊕W stably split as a wedge sum of Thom spaces defined over Grassmanians. Additionally, they produced a similar filtration for loops on SU(V), with a similar splitting. A few years later, Michael Crabb made explicit the equivariance of the Stiefel manifold splittings and conjectured that the splitting of the loop space was equivariant as well. However, it has long been unknown whether the loop space of the real Steifel manifold (or even the special case of ΩSOn) has a similar splitting.

Here, inspired by the work of Greg Arone that made use of Weiss’ orthogonal calculus to generalize the results of Mitchell and Richter, we obtain an Z~2Z-equivariant splitting theorem using an equivariant version of Weiss calculus. In particular, we show that ΩU(V ;W) has an equivariant stable splitting when dim W > 0. By considering the (geometric) fixed points of this loop space, we also obtain, as a corollary, a stable splitting of the space Ω(U(V ;W),O(V_R;W_R)) of paths in U(V ;W) from I to a point of O(V_R;W_R) as well. In particular, by setting W = C, this gives us a stable splitting of Ω(SUn / SOn). In the mid 1980s, Steve Mitchell and Bill Richter produced a filtration of the Stiefel manifolds O(V ;W) and U(V ;W) of orthogonal and unitary, respectively, maps V → V ⊕W stably split as a wedge sum of Thom spaces defined over Grassmanians. Additionally, they produced a similar filtration for loops on SU(V), with a similar splitting. A few years later, Michael Crabb made explicit the equivariance of the Stiefel manifold splittings and conjectured that the splitting of the loop space was equivariant as well. However, it has long been unknown whether the loop space of the real Steifel manifold (or even the special case of ΩSOn) has a similar splitting.

Here, inspired by the work of Greg Arone that made use of Weiss’ orthogonal calculus to generalize the results of Mitchell and Richter, we obtain an Z~2Z-equivariant splitting theorem using an equivariant version of Weiss calculus. In particular, we show that ΩU(V ;W) has an equivariant stable splitting when dim W > 0. By considering the (geometric) fixed points of this loop space, we also obtain, as a corollary, a stable splitting of the space Ω(U(V ;W),O(V_R;W_R)) of paths in U(V ;W) from I to a point of O(V_R;W_R) as well. In particular, by setting W = C, this gives us a stable splitting of Ω(SUn / SOn).
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493281
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters