Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit
View/ Open
47920576.pdf (530.5Kb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Author
Bleszynski Jayich, A. C.
Bennett, S. D.
Rabl, P.
Harris, J. G. E.
Published Version
https://doi.org/10.1126/science.1216821Metadata
Show full item recordCitation
Kolkowitz, S., A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl, J. G. E. Harris, and M. D. Lukin. 2012. “Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit.” Science 335 (6076) (February 23): 1603–1606. doi:10.1126/science.1216821.Abstract
Mechanical systems can be influenced by a wide variety of small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. We demonstrate that the coherent evolution of a single electronic spin associated with a nitrogen vacancy center in diamond can be coupled to the motion of a magnetized mechanical resonator. Coherent manipulation of the spin is used to sense driven and Brownian motion of the resonator under ambient conditions with a precision below 6 picometers. With future improvements, this technique could be used to detect mechanical zero-point fluctuations, realize strong spin-phonon coupling at a single quantum level, and implement quantum spin transducers.Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33717986
Collections
- FAS Scholarly Articles [17845]
Contact administrator regarding this item (to report mistakes or request changes)