Show simple item record

dc.contributor.authorBhandari, Sagar
dc.contributor.authorLee, Gil-Ho
dc.contributor.authorKim, Philip
dc.contributor.authorWestervelt, Robert M.
dc.date.accessioned2017-09-29T20:28:30Z
dc.date.issued2017
dc.identifier.citationBhandari, Sagar, Gil-Ho Lee, Philip Kim, and Robert M. Westervelt. 2017. “Analysis of Scanned Probe Images for Magnetic Focusingin Graphene.” Journal of Electronic Materials 46 (7) (February 21): 3837–3841. doi:10.1007/s11664-017-5350-y.en_US
dc.identifier.issn0361-5235en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:33973827
dc.description.abstractWe have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons. The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.en_US
dc.description.sponsorshipPhysicsen_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofdoi:10.1007/s11664-017-5350-yen_US
dash.licenseOAP
dc.subjectScanning probe microscopy theoryen_US
dc.subjectballistic transporten_US
dc.subjectgrapheneen_US
dc.subjectsimulationen_US
dc.subjectmagnetic focusingen_US
dc.subjectelectron trajectoriesen_US
dc.titleAnalysis of Scanned Probe Images for Magnetic Focusing in Grapheneen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalJournal of Electronic Materialsen_US
dash.depositing.authorKim, Philip
dc.date.available2017-09-29T20:28:30Z
dc.identifier.doi10.1007/s11664-017-5350-y*
workflow.legacycommentsFAR2016en_US
dash.contributor.affiliatedLee, Gil-Ho
dash.contributor.affiliatedBhandari, Sagar
dash.contributor.affiliatedWestervelt, Robert
dash.contributor.affiliatedKim, Philip


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record