ASC: Automatically Scalable Computation

DSpace/Manakin Repository

ASC: Automatically Scalable Computation

Citable link to this page

 

 
Title: ASC: Automatically Scalable Computation
Author: Waterland, Amos; Angelino, Elaine; Adams, Ryan Prescott; Appavoo, Jonathan; Seltzer, Margo I.

Note: Order does not necessarily reflect citation order of authors.

Citation: Waterland, Amos, Elaine Angelino, Ryan P. Adams, Jonathan Appavoo, and Margo Seltzer. 2014. "ASC: automatically scalable computation." In Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, March 1-5, 2014, Salt Lake City, UT: 575-590.
Full Text & Related Files:
Abstract: We present an architecture designed to transparently and automatically scale the performance of sequential programs as a function of the hardware resources available. The architecture is predicated on a model of computation that views program execution as a walk through the enormous state space composed of the memory and registers of a single-threaded processor. Each instruction execution in this model moves the system from its current point in state space to a deterministic subsequent point. We can parallelize such execution by predictively partitioning the complete path and speculatively executing each partition in parallel. Accurately partitioning the path is a challenging prediction problem. We have implemented our system using a functional simulator that emulates the x86 instruction set, including a collection of state predictors and a mechanism for speculatively executing threads that explore potential states along the execution path. While the overhead of our simulation makes it impractical to measure speedup relative to native x86 execution, experiments on three benchmarks show scalability of up to a factor of 256 on a 1024 core machine when executing unmodified sequential programs.
Published Version: doi:10.1145/2541940.2541985
Other Sources: http://www.eecs.harvard.edu/~elaine/pubs/asplos14.pdf
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:34309064
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters