Show simple item record

dc.contributor.authorAmarnani, Dhaneshen_US
dc.contributor.authorMachuca-Parra, Arturo Israelen_US
dc.contributor.authorWong, Lindsay L.en_US
dc.contributor.authorMarko, Christina K.en_US
dc.contributor.authorStefater, James A.en_US
dc.contributor.authorStryjewski, Tomasz P.en_US
dc.contributor.authorEliott, Deanen_US
dc.contributor.authorArboleda-Velasquez, Joseph F.en_US
dc.contributor.authorKim, Leo A.en_US
dc.date.accessioned2017-11-21T20:41:18Z
dc.date.issued2017en_US
dc.identifier.citationAmarnani, Dhanesh, Arturo Israel Machuca-Parra, Lindsay L. Wong, Christina K. Marko, James A. Stefater, Tomasz P. Stryjewski, Dean Eliott, Joseph F. Arboleda-Velasquez, and Leo A. Kim. 2017. “Effect of Methotrexate on an In Vitro Patient-Derived Model of Proliferative Vitreoretinopathy.” Investigative Ophthalmology & Visual Science 58 (10): 3940-3949. doi:10.1167/iovs.16-20912. http://dx.doi.org/10.1167/iovs.16-20912.en
dc.identifier.issnen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:34375089
dc.description.abstractPurpose The purpose of this study was to develop a method for isolating, culturing, and characterizing cells from patient-derived membranes in proliferative vitreoretinopathy (PVR) to be used for drug testing. Methods: PVR membranes were obtained from six patients with grade C PVR. Membrane fragments were analyzed by gross evaluation, fixed for immunohistologic studies to establish cell identity, or digested with collagenase II to obtain single cell suspensions for culture. PVR-derived primary cultures were used to examine the effects of methotrexate (MTX) on proliferation, migration, and cell death. Results: Gross analysis of PVR membranes showed presence of pigmented cells, indicative of retinal pigment epithelial cells. Immunohistochemistry identified cells expressing α-smooth muscle actin, glial fibrillary acidic protein, Bestrophin-1, and F4/80, suggesting the presence of multiple cell types in PVR. Robust PVR primary cultures (C-PVR) were successfully obtained from human membranes, and these cells retained the expression of cell identity markers in culture. C-PVR cultures formed membranes and band-like structures in culture reminiscent of the human condition. MTX significantly reduced the proliferation and band formation of C-PVR, whereas it had no significant effect on cell migration. MTX also induced regulated cell death within C-PVR as assessed by increased expression of caspase-3/7. Conclusions: PVR cells obtained from human membranes can be successfully isolated, cultured, and profiled in vitro. Using these primary cultures, we identified MTX as capable of significantly reducing growth and inducing cell death of PVR cells in vitro.en
dc.language.isoen_USen
dc.publisherThe Association for Research in Vision and Ophthalmologyen
dc.relation.isversionofdoi:10.1167/iovs.16-20912en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544356/pdf/en
dash.licenseLAAen_US
dc.subjectPVRen
dc.subjectproliferative vitreoretinopathyen
dc.subjectretinal detachmenten
dc.subjectmethotrexateen
dc.subjectapoptosisen
dc.titleEffect of Methotrexate on an In Vitro Patient-Derived Model of Proliferative Vitreoretinopathyen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalInvestigative Ophthalmology & Visual Scienceen
dash.depositing.authorStefater, James A.en_US
dc.date.available2017-11-21T20:41:18Z
dc.identifier.doi10.1167/iovs.16-20912*
dash.contributor.affiliatedStefater, James
dash.contributor.affiliatedStryjewski, Tomasz
dash.contributor.affiliatedEliott, Dean
dash.contributor.affiliatedKim, Leo


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record