Show simple item record

dc.contributor.authorBhandari, Sagar
dc.contributor.authorWang, Ke
dc.contributor.authorWatanabe, K
dc.contributor.authorTaniguchi, T
dc.contributor.authorKim, Philip
dc.contributor.authorWestervelt, Robert M.
dc.date.accessioned2017-11-28T21:00:58Z
dc.date.issued2017
dc.identifier.citationBhandari, S, K Wang, K Watanabe, T Taniguchi, P Kim, and R M Westervelt. 2017. “Imaging Electron Motion in a Few Layer MoS2 Device.” Journal of Physics: Conference Series 864 (June): 012031. doi:10.1088/1742-6596/864/1/012031.en_US
dc.identifier.issn1742-6588en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:34390118
dc.description.abstractUltrathin sheets of MoS2 are a newly discovered 2D semiconductor that holds great promise for nanoelectronics. Understanding the pattern of current flow will be crucial for developing devices. In this talk, we present images of current flow in MoS2 obtained with a Scanned Probe Microscope (SPM) cooled to 4 K. We previously used this technique to image electron trajectories in GaAs/AlGaAs heterostructures and graphene. The charged SPM tip is held just above the sample surface, creating an image charge inside the device that scatters electrons. By measuring the change in resistance ΔR while the tip is raster scanned above the sample, an image of electron flow is obtained. We present images of electron flow in an MoS2 device patterned into a hall bar geometry. A three-layer MoS2 sheet is encased by two hBN layers, top and bottom, and patterned into a hall-bar with multilayer graphene contacts. An SPM image shows the current flow pattern from the wide contact at the end of the device for a Hall density n = 1.3×1012 cm-2. The SPM tip tends to block flow, increasing the resistance R. The pattern of flow was also imaged for a narrow side contact on the sample. At density n = 5.4×1011 cm-2; the pattern seen in the SPM image is similar to the wide contact. The ability to image electron flow promises to be very useful for the development of ultrathin devices from new 2D materials.en_US
dc.description.sponsorshipPhysicsen_US
dc.language.isoen_USen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofdoi:10.1088/1742-6596/864/1/012031en_US
dash.licenseOAP
dc.titleImaging Electron Motion in a Few Layer MoS2 Deviceen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalJournal of Physics: Conference Seriesen_US
dash.depositing.authorKim, Philip
dc.date.available2017-11-28T21:00:58Z
dc.identifier.doi10.1088/1742-6596/864/1/012031*
workflow.legacycommentsFAR2016en_US
dash.contributor.affiliatedBhandari, Sagar
dash.contributor.affiliatedWang, Ke
dash.contributor.affiliatedWestervelt, Robert
dash.contributor.affiliatedKim, Philip


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record