Nerves and Neovessels Inhibit Each Other in the Cornea

DSpace/Manakin Repository

Nerves and Neovessels Inhibit Each Other in the Cornea

Citable link to this page


Title: Nerves and Neovessels Inhibit Each Other in the Cornea
Author: Ferrari, Giulio; Hajrasouliha, Amir R.; Sadrai, Zahra; Ueno, Hiroki; Chauhan, Sunil Kumar; Dana, Reza

Note: Order does not necessarily reflect citation order of authors.

Citation: Ferrari, Giulio, Amir R. Hajrasouliha, Zahra Sadrai, Hiroki Ueno, Sunil K. Chauhan, and Reza Dana. 2013. “Nerves and Neovessels Inhibit Each Other in the Cornea.” Investigative Opthalmology & Visual Science 54 (1) (January 28): 813. doi:10.1167/iovs.11-8379.
Full Text & Related Files:
Abstract: Purpose.

To evaluate the regulatory cross-talk of the vascular and neural networks in the cornea.


b-FGF micropellets (80 ng) were implanted in the temporal side of the cornea of healthy C57Bl/6 mice. On day 7, blood vessels (hemangiogenesis) and nerves were observed by immunofluorescence staining of corneal flat mounts. The next group of mice underwent either trigeminal stereotactic electrolysis (TSE), or sham operation, to ablate the ophthalmic branch of the trigeminal nerve. Blood vessel growth was detected by immunohistochemistry for PECAM-1 (CD31) following surgery. In another set of mice following TSE or sham operation, corneas were harvested for ELISA (VEGFR3 and pigment epithelium-derived factor [PEDF]) and for quantitative RT-PCR (VEGFR3, PEDF, and CD45). PEDF, VEGFR3, beta-3 tubulin, CD45, CD11b, and F4/80 expression in the cornea were evaluated using immunostaining.


No nerves were detected in the areas subject to corneal neovascularization, whereas they persisted in the areas that were neovessel-free. Conversely, 7 days after denervation, significant angiogenesis was detected in the cornea, and this was associated with a significant decrease in VEGFR3 (57.5% reduction, P = 0.001) and PEDF protein expression (64% reduction, P < 0.001). Immunostaining also showed reduced expression of VEGFR3 in the corneal epithelial layer. Finally, an inflammatory cell infiltrate, including macrophages, was observed.


Our data suggest that sensory nerves and neovessels inhibit each other in the cornea. When vessel growth is stimulated, nerves disappear and, conversely, denervation induces angiogenesis. This phenomenon, here described in the eye, may have far-reaching implications in understanding angiogenesis.
Published Version: 10.1167/iovs.11-8379
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search