Show simple item record

dc.contributor.authorDeMarco, Laura G.
dc.contributor.authorMcMullen, Curtis T.
dc.date.accessioned2009-12-17T14:31:29Z
dc.date.issued2008
dc.identifier.citationDeMarco, Laura G., and Curtis T. McMullen. 2008. Trees and the dynamics of polynomials. Annales Scientifiques de l'École Normale Supérieure 41: 337-383.en_US
dc.identifier.issn0012-9593en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:3445096
dc.description.abstractIn this paper we study branched coverings of metrized, simplicial trees F : T → T which arise from polynomial maps f : C → C with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space PTD compactifying the moduli space of polynomials of degree D; that F records the asymptotic behavior of the multipliers of f; and that any meromorphic family of polynomials over Δ* can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial enumeration of the trees that arise, and show that PT3 is itself a tree.en_US
dc.description.sponsorshipMathematicsen_US
dc.language.isoen_USen_US
dc.publisherSociete Mathematique de Franceen_US
dc.relation.isversionofhttp://smf.emath.fr/Publications/en_US
dc.relation.isversionofhttp://smf.emath.fr/Publications/AnnalesENS/4_41/html/en_US
dash.licenseOAP
dc.titleTrees and the Dynamics of Polynomialsen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalAnnales Scientifiques- Ecole Normale Superieure Parisen_US
dash.depositing.authorMcMullen, Curtis T.
dc.date.available2009-12-17T14:31:29Z
dc.identifier.doi10.24033/asens.2070
dash.contributor.affiliatedMcMullen, Curtis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record