dc.contributor.author | McMullen, Curtis T. | |
dc.date.accessioned | 2009-12-21T19:30:37Z | |
dc.date.issued | 1998 | |
dc.identifier.citation | McMullen, Curtis T. 1998. Self-similarity of Siegel disks and the Hausdorff dimension of Julia sets. Acta Mathematica 180(2): 247–292. Revised 2004. | en_US |
dc.identifier.issn | 0001-5962 | en_US |
dc.identifier.uri | http://nrs.harvard.edu/urn-3:HUL.InstRepos:3445997 | |
dc.description.abstract | Let f(z) = e2 i z +z2, where θ is an irrational number of bounded type. According
to Siegel, f is linearizable on a disk containing the origin. In this paper we show:
• the Hausdorff dimension of the Julia set J(f) is strictly less than two; and
• if θ is a quadratic irrational (such as the golden mean), then the Siegel disk for f
is self-similar about the critical point.
In the latter case, we also show the rescaled first-return maps converge exponentially
fast to a system of commuting branched coverings of the complex plane. | en_US |
dc.description.sponsorship | Mathematics | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.isversionof | doi:10.1007/BF02392901 | en_US |
dc.relation.hasversion | http://www.math.harvard.edu/~ctm/papers/index.html | en_US |
dash.license | LAA | |
dc.title | Self-Similarity of Siegel Disks and Hausdorff Dimension of Julia Sets | en_US |
dc.type | Journal Article | en_US |
dc.description.version | Author's Original | en_US |
dc.relation.journal | Acta Mathematica -Stockholm- | en_US |
dash.depositing.author | McMullen, Curtis T. | |
dc.date.available | 2009-12-21T19:30:37Z | |
dc.identifier.doi | 10.1007/BF02392901 | * |
dash.contributor.affiliated | McMullen, Curtis | |