Show simple item record

dc.contributor.authorMcMullen, Curtis T.
dc.date.accessioned2009-12-21T19:30:37Z
dc.date.issued1998
dc.identifier.citationMcMullen, Curtis T. 1998. Self-similarity of Siegel disks and the Hausdorff dimension of Julia sets. Acta Mathematica 180(2): 247–292. Revised 2004.en_US
dc.identifier.issn0001-5962en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:3445997
dc.description.abstractLet f(z) = e2 i z +z2, where θ is an irrational number of bounded type. According to Siegel, f is linearizable on a disk containing the origin. In this paper we show: • the Hausdorff dimension of the Julia set J(f) is strictly less than two; and • if θ is a quadratic irrational (such as the golden mean), then the Siegel disk for f is self-similar about the critical point. In the latter case, we also show the rescaled first-return maps converge exponentially fast to a system of commuting branched coverings of the complex plane.en_US
dc.description.sponsorshipMathematicsen_US
dc.language.isoen_USen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofdoi:10.1007/BF02392901en_US
dc.relation.hasversionhttp://www.math.harvard.edu/~ctm/papers/index.htmlen_US
dash.licenseLAA
dc.titleSelf-Similarity of Siegel Disks and Hausdorff Dimension of Julia Setsen_US
dc.typeJournal Articleen_US
dc.description.versionAuthor's Originalen_US
dc.relation.journalActa Mathematica -Stockholm-en_US
dash.depositing.authorMcMullen, Curtis T.
dc.date.available2009-12-21T19:30:37Z
dc.identifier.doi10.1007/BF02392901*
dash.contributor.affiliatedMcMullen, Curtis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record