Show simple item record

dc.contributor.authorTrappmann, Brittaen_US
dc.contributor.authorBaker, Brendon M.en_US
dc.contributor.authorPolacheck, William J.en_US
dc.contributor.authorChoi, Colin K.en_US
dc.contributor.authorBurdick, Jason A.en_US
dc.contributor.authorChen, Christopher S.en_US
dc.date.accessioned2017-12-05T23:48:17Z
dc.date.issued2017en_US
dc.identifier.citationTrappmann, Britta, Brendon M. Baker, William J. Polacheck, Colin K. Choi, Jason A. Burdick, and Christopher S. Chen. 2017. “Matrix degradability controls multicellularity of 3D cell migration.” Nature Communications 8 (1): 371. doi:10.1038/s41467-017-00418-6. http://dx.doi.org/10.1038/s41467-017-00418-6.en
dc.identifier.issnen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:34491891
dc.description.abstractA major challenge in tissue engineering is the development of materials that can support angiogenesis, wherein endothelial cells from existing vasculature invade the surrounding matrix to form new vascular structures. To identify material properties that impact angiogenesis, here we have developed an in vitro model whereby molded tubular channels inside a synthetic hydrogel are seeded with endothelial cells and subjected to chemokine gradients within a microfluidic device. To accomplish precision molding of hydrogels and successful integration with microfluidics, we developed a class of hydrogels that could be macromolded and micromolded with high shape and size fidelity by eliminating swelling after polymerization. Using this material, we demonstrate that matrix degradability switches three-dimensional endothelial cell invasion between two distinct modes: single-cell migration and the multicellular, strand-like invasion required for angiogenesis. The ability to incorporate these tunable hydrogels into geometrically constrained settings will enable a wide range of previously inaccessible biomedical applications.en
dc.language.isoen_USen
dc.publisherNature Publishing Group UKen
dc.relation.isversionofdoi:10.1038/s41467-017-00418-6en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575316/pdf/en
dash.licenseLAAen_US
dc.titleMatrix degradability controls multicellularity of 3D cell migrationen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalNature Communicationsen
dash.depositing.authorPolacheck, William J.en_US
dc.date.available2017-12-05T23:48:17Z
dc.identifier.doi10.1038/s41467-017-00418-6*
dash.contributor.affiliatedPolacheck, William J.
dash.contributor.affiliatedChen, Christopher


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record