Energy-efficient waveform for electrical stimulation of the cochlear nerve

DSpace/Manakin Repository

Energy-efficient waveform for electrical stimulation of the cochlear nerve

Citable link to this page


Title: Energy-efficient waveform for electrical stimulation of the cochlear nerve
Author: Yip, Marcus; Bowers, Peter; Noel, Victor; Chandrakasan, Anantha; Stankovic, Konstantina M.

Note: Order does not necessarily reflect citation order of authors.

Citation: Yip, Marcus, Peter Bowers, Victor Noel, Anantha Chandrakasan, and Konstantina M. Stankovic. 2017. “Energy-efficient waveform for electrical stimulation of the cochlear nerve.” Scientific Reports 7 (1): 13582. doi:10.1038/s41598-017-13671-y.
Full Text & Related Files:
Abstract: The cochlear implant (CI) is the most successful neural prosthesis, restoring the sensation of sound in people with severe-to-profound hearing loss by electrically stimulating the cochlear nerve. Existing CIs have an external, visible unit, and an internal, surgically-placed unit. There are significant challenges associated with the external unit, as it has limited utility and CI users often report a social stigma associated with prosthesis visibility. A fully-implantable CI (FICI) would address these issues. However, the volume constraint imposed on the FICI requires less power consumption compared to today’s CI. Because neural stimulation by CI electrodes accounts for up to 90% of power consumption, reduction in stimulation power will result directly in CI power savings. To determine an energy-efficient waveform for cochlear nerve stimulation, we used a genetic algorithm approach, incorporating a computational model of a single mammalian myelinated cochlear nerve fiber coupled to a stimulator-electrode-tissue interface. The algorithm’s prediction was tested in vivo in human CI subjects. We find that implementation of a non-rectangular biphasic neural stimulation waveform may result in up to 25% charge savings and energy savings within the comfortable range of hearing for CI users. The alternative waveform may enable future development of a FICI.
Published Version: doi:10.1038/s41598-017-13671-y
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search