miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1

DSpace/Manakin Repository

miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1

Citable link to this page

 

 
Title: miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1
Author: Xiao, Junjie; Liu, Hui; Cretoiu, Dragos; Toader, Daniela Oana; Suciu, Nicolae; Shi, Jing; Shen, Shutong; Bei, Yihua; Sluijter, Joost PG; Das, Saumya; Kong, Xiangqing; Li, Xinli

Note: Order does not necessarily reflect citation order of authors.

Citation: Xiao, J., H. Liu, D. Cretoiu, D. O. Toader, N. Suciu, J. Shi, S. Shen, et al. 2017. “miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1.” Experimental & Molecular Medicine 49 (10): e386. doi:10.1038/emm.2017.150. http://dx.doi.org/10.1038/emm.2017.150.
Full Text & Related Files:
Abstract: A limited number of microRNAs (miRNAs, miRs) have been reported to control postnatal cardiomyocyte proliferation, but their strong regulatory effects suggest a possible therapeutic approach to stimulate regenerative capacity in the diseased myocardium. This study aimed to investigate the miRNAs responsible for postnatal cardiomyocyte proliferation and their downstream targets. Here, we compared miRNA profiles in cardiomyocytes between postnatal day 0 (P0) and day 10 (P10) using miRNA arrays, and found that 21 miRNAs were upregulated at P10, whereas 11 were downregulated. Among them, miR-31a-5p was identified as being able to promote cardiomyocyte proliferation as determined by proliferating cell nuclear antigen (PCNA) expression, double immunofluorescent labeling for α-actinin and 5-ethynyl-2-deoxyuridine (EdU) or Ki-67, and cell number counting, whereas miR-31a-5p inhibition could reduce their levels. RhoBTB1 was identified as a target gene of miR-31a-5p, mediating the regulatory effect of miR-31a-5p in cardiomyocyte proliferation. Importantly, neonatal rats injected with a miR-31a-5p antagomir at day 0 for three consecutive days exhibited reduced expression of markers of cardiomyocyte proliferation including PCNA expression and double immunofluorescent labeling for α-actinin and EdU, Ki-67 or phospho-histone-H3. In conclusion, miR-31a-5p controls postnatal cardiomyocyte proliferation by targeting RhoBTB1, and increasing miR-31a-5p level might be a novel therapeutic strategy for enhancing cardiac reparative processes.
Published Version: doi:10.1038/emm.2017.150
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668467/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:34493228
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters