Hidden symmetry and the magnetically induced “Mott transition” in quantum wells containing an electron gas
View/ Open
2000_SSC_Sturge.pdf (87.35Kb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Published Version
https://doi.org/10.1016/s0038-1098(00)00117-4Metadata
Show full item recordCitation
Rashba, E.I., M.D. Sturge, H.W. Yoon, and L.N. Pfeiffer. 2000. “Hidden Symmetry and the Magnetically Induced ‘Mott Transition’ in Quantum Wells Containing an Electron Gas.” Solid State Communications 114 (11) (May): 593–596. doi:10.1016/s0038-1098(00)00117-4.Abstract
The magnetoluminescence spectra of symmetric quantum wells containing an electron gas show an abrupt transition from Landau level behavior (i.e. a linear shift of energy with field) to quadratic (exciton-like) behavior as the magnetic field is increased. This so-called "Mott transition" always occurs at the field at which the electron filling factor νe is 2, i.e. when the lowest Landau level is just filled. We show that the transition is a natural consequence of a hidden symmetry which has been shown to hold in two-dimensional systems at high fields. The mechanism driving it has nothing to do with that driving the true Mott transition, and it would be better named a "symmetry-driven transition".Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34602858
Collections
- FAS Scholarly Articles [18056]
Contact administrator regarding this item (to report mistakes or request changes)
Comments made during the workflow steps
oap.needman