Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart

DSpace/Manakin Repository

Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart

Citable link to this page

 

 
Title: Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart
Author: Zhou, Zhengwei; Nguyen, Christopher; Chen, Yuhua; Shaw, Jaime L.; Deng, Zixin; Xie, Yibin; Dawkins, James; Marbán, Eduardo; Li, Debiao

Note: Order does not necessarily reflect citation order of authors.

Citation: Zhou, Zhengwei, Christopher Nguyen, Yuhua Chen, Jaime L. Shaw, Zixin Deng, Yibin Xie, James Dawkins, Eduardo Marbán, and Debiao Li. 2017. “Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart.” Journal of Cardiovascular Magnetic Resonance 19 (1): 95. doi:10.1186/s12968-017-0411-1. http://dx.doi.org/10.1186/s12968-017-0411-1.
Full Text & Related Files:
Abstract: Background: Previous studies have linked cardiac dysfunction to loss of metabolites in the creatine kinase system. Chemical exchange saturation transfer (CEST) is a promising metabolic cardiovascular magnetic resonance (CMR) imaging technique and has been applied in the heart for creatine mapping. However, current limitations include: (a) long scan time, (b) residual cardiac and respiratory motion, and (c) B0 field variations induced by respiratory motion. An improved CEST CMR technique was developed to address these problems. Methods: Animals with chronic myocardial infarction (N = 15) were scanned using the proposed CEST CMR technique and a late gadolinium enhancement (LGE) sequence as reference. The major improvements of the CEST CMR technique are: (a) Images were acquired by single-shot FLASH, significantly increasing the scan efficiency. (b) All images were registered to reduce the residual motion. (c) The acquired Z-spectrum was analyzed using 3-pool-model Lorentzian-line fitting to generate CEST signal, reducing the impact of B0 field shifting due to respiratory motion. Feasibility of the technique was tested in a porcine model with chronic myocardial infarction. CEST signal was measured in the scar, border zone and remote myocardium. Initial studies were performed in one patient. Results: In all animals, healthy remote myocardial CEST signal was elevated (0.16 ± 0.02) compared to infarct CEST signal (0.09 ± 0.02, P < 0.001) and the border zone (0.12 ± 0.02, P < 0.001). For both animal and patient studies, the hypointense regions in the CEST contrast maps closely match the bright areas in the LGE images. Conclusions: The proposed CEST CMR technique was developed to address long scan times, respiratory and cardiac motion, and B0 field variations. Lower CEST signal in bright region of the LGE image is consistent with the fact that myocardial infarction has reduced metabolic activity.
Published Version: doi:10.1186/s12968-017-0411-1
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707904/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:34651824
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters