Fine-mapping inflammatory bowel disease loci to single variant resolution

DSpace/Manakin Repository

Fine-mapping inflammatory bowel disease loci to single variant resolution

Citable link to this page

 

 
Title: Fine-mapping inflammatory bowel disease loci to single variant resolution
Author: Huang, Hailiang; Fang, Ming; Jostins, Luke; Mirkov, Maša Umićević; Boucher, Gabrielle; Anderson, Carl A; Andersen, Vibeke; Cleynen, Isabelle; Cortes, Adrian; Crins, François; D'Amato, Mauro; Deffontaine, Valérie; Dimitrieva, Julia; Docampo, Elisa; Elansary, Mahmoud; Farh, Kyle Kai-How; Franke, Andre; Gori, Ann-Stephan; Goyette, Philippe; Halfvarson, Jonas; Haritunians, Talin; Knight, Jo; Lawrance, Ian C; Lees, Charlie W; Louis, Edouard; Mariman, Rob; Meuwissen, Theo; Mni, Myriam; Momozawa, Yukihide; Parkes, Miles; Spain, Sarah L; Théâtre, Emilie; Trynka, Gosia; Satsangi, Jack; van Sommeren, Suzanne; Vermeire, Severine; Xavier, Ramnik J; Weersma, Rinse K; Duerr, Richard H; Mathew, Christopher G; Rioux, John D; McGovern, Dermot PB; Cho, Judy H; Georges, Michel; Daly, Mark J; Barrett, Jeffrey C

Note: Order does not necessarily reflect citation order of authors.

Citation: Huang, H., M. Fang, L. Jostins, M. U. Mirkov, G. Boucher, C. A. Anderson, V. Andersen, et al. 2017. “Fine-mapping inflammatory bowel disease loci to single variant resolution.” Nature 547 (7662): 173-178. doi:10.1038/nature22969. http://dx.doi.org/10.1038/nature22969.
Full Text & Related Files:
Abstract: Summary The inflammatory bowel diseases (IBD) are chronic gastrointestinal inflammatory disorders that affect millions worldwide. Genome-wide association studies have identified 200 IBD-associated loci, but few have been conclusively resolved to specific functional variants. Here we report fine-mapping of 94 IBD loci using high-density genotyping in 67,852 individuals. We pinpointed 18 associations to a single causal variant with >95% certainty, and an additional 27 associations to a single variant with >50% certainty. These 45 variants are significantly enriched for protein-coding changes (n=13), direct disruption of transcription factor binding sites (n=3) and tissue specific epigenetic marks (n=10), with the latter category showing enrichment in specific immune cells among associations stronger in CD and in gut mucosa among associations stronger in UC. The results of this study suggest that high-resolution fine-mapping in large samples can convert many GWAS discoveries into statistically convincing causal variants, providing a powerful substrate for experimental elucidation of disease mechanisms.
Published Version: doi:10.1038/nature22969
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511510/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:34651928
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters