Show simple item record

dc.contributor.authorSafaei, Hossein
dc.contributor.authorKeith, David
dc.contributor.authorHugo, Ronald J.
dc.date.accessioned2018-01-23T19:05:40Z
dc.date.issued2013
dc.identifierQuick submit: 2014-02-22T21:04:14-05:00
dc.identifier.citationSafaei, Hossein, David W. Keith, and Ronald J. Hugo. 2013. “Compressed Air Energy Storage (CAES) with Compressors Distributed at Heat Loads to Enable Waste Heat Utilization.” Applied Energy 103 (March): 165–179. doi:10.1016/j.apenergy.2012.09.027.en_US
dc.identifier.issn0306-2619en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:34721993
dc.description.abstractLarge scale penetration of renewable energies such as wind and solar into the electric grid is complicated by their intermittency. Energy storage systems can mitigate these fluctuations by storing off-peak energy for use at peak-demand times. Compressed air energy storage (CAES) is one of the most promising storage technologies due to the large amount of energy that can be stored at an economical cost. We evaluate the feasibility of improving the economics of CAES by distributing compressors near heat loads to enable recovery of the heat of compression to supply low-grade heating needs such as district heating. Distributed CAES (DCAES) is more efficient; however, it has higher capital costs due to the compressed air pipeline required between distributed compressors and the storage site. We evaluate the project economics of DCAES in a hypothetical scenario with a variable electric and heat load. The size and dispatch of a generation fleet composed of a wind farm, CAES or DCAES plant and conventional gas turbines are optimized to satisfy the annual electricity load at an hourly resolution at the lowest total cost. We find that the total cost of supplying heat and electric loads is less expensive with DCAES given a 50 km pipeline when fuel prices exceed $7.6/GJ. The cross-over fuel price depends on the distance as it drives the capital cost of the pipeline. The minimum effective fuel price required for economic superiority of the DCAES system is $7.0/GJ and $8.3/GJ at pipeline lengths of 25 and 100 km, respectively.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.language.isoen_USen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofdoi:10.1016/j.apenergy.2012.09.027en_US
dash.licenseMETA_ONLY
dc.subjectCompressed air energy storageen_US
dc.subjectWaste heat recoveryen_US
dc.subjectDistrict heatingen_US
dc.subjectEconomic analysisen_US
dc.subjectEmission taxen_US
dc.subjectOptimizationen_US
dc.titleCompressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilizationen_US
dc.typeJournal Articleen_US
dc.date.updated2014-02-23T02:05:53Z
dc.description.versionVersion of Recorden_US
dc.rights.holderHossein Safaei, David W. Keith, Ronald J. Hugo
dc.relation.journalApplied Energyen_US
dash.depositing.authorKeith, David
dash.embargo.until10000-01-01
dc.identifier.doi10.1016/j.apenergy.2012.09.027*
workflow.legacycommentsFAR 2013 oap.needman (MM) Keith emailed 2016-05-04 ADen_US
dash.contributor.affiliatedKeith, David


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record