Solid-state electronic spin coherence time approaching one second
View/ Open
Solid-State Electronic Spin Coherence Time Approaching One Second.pdf (376.5Kb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Published Version
https://doi.org/10.1038/ncomms2771Metadata
Show full item recordCitation
Bar-Gill, N., L.M. Pham, A. Jarmola, D. Budker, and R.L. Walsworth. 2013. “Solid-State Electronic Spin Coherence Time Approaching One Second.” Nature Communications 4 (April 23): 1743. doi:10.1038/ncomms2771.Abstract
Solid-state spin systems such as nitrogen-vacancy colour centres in diamond are promising for applications of quantum information, sensing and metrology. However, a key challenge for such solid-state systems is to realize a spin coherence time that is much longer than the time for quantum spin manipulation protocols. Here we demonstrate an improvement of more than two orders of magnitude in the spin coherence time (T\(_2\)) of nitrogen-vacancy centres compared with previous measurements: T\(_2\)≈0.6 s at 77 K. We employed dynamical decoupling pulse sequences to suppress nitrogen-vacancy spin decoherence, and found that T\(_2\) is limited to approximately half of the longitudinal spin relaxation time over a wide range of temperatures, which we attribute to phonon-induced decoherence. Our results apply to ensembles of nitrogen-vacancy spins, and thus could advance quantum sensing, enable squeezing and many-body entanglement, and open a path to simulating driven, interaction-dominated quantum many-body Hamiltonians.Other Sources
http://arxiv.org/pdf/1211.7094v2.pdfCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34722208
Collections
- FAS Scholarly Articles [17845]
Contact administrator regarding this item (to report mistakes or request changes)