Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme

DSpace/Manakin Repository

Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme

Citable link to this page

 

 
Title: Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme
Author: Craciun, S.; Balskus, Emily Patricia

Note: Order does not necessarily reflect citation order of authors.

Citation: Craciun, S., and E. P. Balskus. 2012. “Microbial Conversion of Choline to Trimethylamine Requires a Glycyl Radical Enzyme.” Proceedings of the National Academy of Sciences 109 (52) (November 14): 21307–21312. doi:10.1073/pnas.1215689109.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: Choline and trimethylamine (TMA) are small molecules that play central roles in biological processes throughout all kingdoms of life. These ubiquitous metabolites are linked through a single biochemical transformation, the conversion of choline to TMA by anaerobic microorganisms. This metabolic activity, which contributes to methanogenesis and human disease, has been known for over a century but has eluded genetic and biochemical characterization. We have identified a gene cluster responsible for anaerobic choline degradation within the genome of a sulfate-reducing bacterium and verified its function using both a genetic knockout strategy and heterologous expression in Escherichia coli. Bioinformatics and electron paramagnetic resonance (EPR) spectroscopy revealed the involvement of a C–N bond cleaving glycyl radical enzyme in TMA production, which is unprecedented chemistry for this enzyme family. Our discovery provides the predictive capabilities needed to identify choline utilization clusters in numerous bacterial genomes, underscoring the importance and prevalence of this metabolic activity within the human microbiota and the environment.
Published Version: 10.1073/pnas.1215689109
Other Sources: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535645/
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:34732390
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters