Show simple item record

dc.contributor.authorWeitzman, Martin L.
dc.date.accessioned2010-02-23T15:53:38Z
dc.date.issued2009
dc.identifier.citationWeitzman, Martin L. 2009. On modeling and interpreting the economics of catastrophic climate change. Review of Economics and Statistics 91(1): 1-19.en_US
dc.identifier.issn0034-6535en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:3693423
dc.description.abstractWith climate change as prototype example, this paper analyzes the implications of structural uncertainty for the economics of low-probability, high-impact catastrophes. Even when updated by Bayesian learning, uncertain structural parameters induce a critical “tail fattening” of posterior-predictive distributions. Such fattened tails have strong implications for situations, like climate change, where a catastrophe is theoretically possible because prior knowledge cannot place sufficiently narrow bounds on overall damages. This paper shows that the economic consequences of fat-tailed structural uncertainty (along with unsureness about high-temperature damages) can readily outweigh the effects of discounting in climate-change policy analysis.en_US
dc.description.sponsorshipEconomicsen_US
dc.language.isoen_USen_US
dc.publisherMassachusetts Institute of Technology Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1162/rest.91.1.1en_US
dash.licenseLAA
dc.titleOn Modeling and Interpreting the Economics of Catastrophic Climate Changeen_US
dc.typeCommentary or Reviewen_US
dc.description.versionProofen_US
dc.relation.journalReview of Economics and Statisticsen_US
dash.depositing.authorWeitzman, Martin L.
dc.date.available2010-02-23T15:53:38Z
dc.identifier.doi10.1162/rest.91.1.1*
dash.contributor.affiliatedWeitzman, Martin


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record