Show simple item record

dc.contributor.authorPaulson, Bjornen_US
dc.contributor.authorShin, Inchulen_US
dc.contributor.authorJeong, Hayoungen_US
dc.contributor.authorKong, Byungjooen_US
dc.contributor.authorKhazaeinezhad, Rezaen_US
dc.contributor.authorDugasani, Sreekantha Reddyen_US
dc.contributor.authorJung, Woohyunen_US
dc.contributor.authorJoo, Boramen_US
dc.contributor.authorLee, Hoi-Younen_US
dc.contributor.authorPark, Sunghaen_US
dc.contributor.authorOh, Kyunghwanen_US
dc.date.accessioned2018-07-25T14:23:01Z
dc.date.issued2018en_US
dc.identifier.citationPaulson, B., I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, et al. 2018. “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping.” Scientific Reports 8 (1): 9358. doi:10.1038/s41598-018-27166-x. http://dx.doi.org/10.1038/s41598-018-27166-x.en
dc.identifier.issnen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:37298380
dc.description.abstractA new route to systematically control the optical dispersion properties of surfactant-free deoxyribonucleic acid (DNA) thin solid films was developed by doping them with vitamin B2, also known as riboflavin. Surfactant-free DNA solid films of high optical quality were successfully deposited on various types of substrates by spin coating of aqueous solutions without additional chemical processes, with thicknesses ranging from 18 to 100 nm. Optical properties of the DNA films were investigated by measuring UV-visible-NIR transmission, and their refractive indices were measured using variable-angle spectroscopic ellipsometry. By doping DNA solid films with riboflavin, the refractive index was consistently increased with an index difference Δn ≥ 0.015 in the spectral range from 500 to 900 nm, which is sufficiently large to make an all-DNA optical waveguide. Detailed correlation between the optical dispersion and riboflavin concentration was experimentally investigated and thermo-optic coefficients of the DNA-riboflavin thin solid films were also experimentally measured in the temperature range from 20 to 85 °C, opening the potential to new bio-thermal sensing applications.en
dc.language.isoen_USen
dc.publisherNature Publishing Group UKen
dc.relation.isversionofdoi:10.1038/s41598-018-27166-xen
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008429/pdf/en
dash.licenseLAAen_US
dc.titleOptical dispersion control in surfactant-free DNA thin films by vitamin B2 dopingen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalScientific Reportsen
dc.date.available2018-07-25T14:23:01Z
dc.identifier.doi10.1038/s41598-018-27166-x*
dash.authorsorderedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record