Show simple item record

dc.contributor.advisorGray, Nathanael
dc.contributor.advisorWalker, Suzanne
dc.contributor.authorTan, Zhi Wei
dc.date.accessioned2020-10-05T12:02:08Z
dc.date.created2020-03
dc.date.issued2020-01-22
dc.date.submitted2020
dc.identifier.citationTan, Zhi Wei. 2020. Novel OGT Inhibitors Reveal O-GlcNAc Regulates Splicing. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
dc.identifier.urihttps://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365514*
dc.description.abstractReversible glycosylation of nuclear and cytoplasmic proteins is an important regulatory mechanism across metazoans. One enzyme, O-linked N-acetylglucosamine transferase (OGT), is responsible for all nucleocytoplasmic protein glycosylation and there is a well-known need for potent, cell-permeable inhibitors to interrogate OGT function. Here we report the structure-based evolution of OGT inhibitors culminating in compounds with low nanomolar inhibitory potency and on-target cellular activity. The structures we report provide insight into how to inhibit glycosyltransferases, a family of enzymes that has been notoriously refractory to inhibitor development. Intron detention in precursor RNAs serves to regulate expression of a substantial fraction of genes in eukaryotic genomes. How detained intron (DI) splicing is controlled is poorly understood. Here we show that O-GlcNAc, which is thought to integrate signaling pathways as nutrient conditions fluctuate, controls detained intron splicing. Using specific inhibitors of OGT and the enzyme that removes O-GlcNAc (OGA), we first show that O-GlcNAc regulates splicing of the highly conserved detained introns in OGT and OGA to control mRNA abundance in order to buffer O-GlcNAc changes. We show that OGT and OGA represent two distinct paradigms for how DI splicing can control gene expression. We also show that when DI splicing of the O-GlcNAc-cycling genes fails to restore O-GlcNAc homeostasis, there is a global change in detained intron levels. Strikingly, almost all detained introns are spliced more efficiently when O-GlcNAc levels are low, yet other alternative splicing pathways change minimally. Our results demonstrate that O-GlcNAc controls detained intron splicing to tune system-wide gene expression, providing a means to couple nutrient conditions to the cell’s transcriptional regime.
dc.description.sponsorshipChemical Biology
dc.format.mimetypeapplication/pdf
dc.language.isoen
dash.licenseLAA
dc.subjectSmall molecule inhibitor development, RNA splicing, proteomics, phosphoproteomics, chemical biology, RNA-Seq, OGT
dc.titleNovel OGT Inhibitors Reveal O-GlcNAc Regulates Splicing
dc.typeThesis or Dissertation
dash.depositing.authorTan, Zhi Wei
dc.date.available2020-10-05T12:02:08Z
thesis.degree.date2020
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.levelDoctoral
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
thesis.degree.nameDoctor of Philosophy
dc.contributor.committeeMemberMarto, Jarrod
dc.contributor.committeeMemberBoutz, Paul
dc.type.materialtext
thesis.degree.departmentChemical Biology
thesis.degree.departmentChemical Biology
dash.identifier.vireo
dash.author.emailhayzhiwei@gmail.com


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record