Show simple item record

dc.contributor.authorEggert, Ulrike S
dc.contributor.authorKiger, Amy A
dc.contributor.authorRichter, Constance
dc.contributor.authorPerlman, Zachary E
dc.contributor.authorPerrimon, Norbert
dc.contributor.authorMitchison, Timothy J
dc.contributor.authorField, Christine M
dc.date.accessioned2021-04-05T15:56:19Z
dc.date.issued2004-10-05
dc.identifier.citationEggert, Ulrike S., Amy A. Kiger, Constance Richter, Zachary E. Perlman, Norbert Perrimon, Timothy J. Mitchison, and Christine M. Field. "Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets." PLoS Biol 2, no. 12 (2004): e379.en_US
dc.identifier.issn1545-7885en_US
dc.identifier.urihttps://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367165*
dc.description.abstractCytokinesis involves temporally and spatially coordinated action of the cell cycle and cytoskeletal and membrane systems to achieve separation of daughter cells. To dissect cytokinesis mechanisms it would be useful to have a complete catalog of the proteins involved, and small molecule tools for specifically inhibiting them with tight temporal control. Finding active small molecules by cell-based screening entails the difficult step of identifying their targets. We performed parallel chemical genetic and genome-wide RNA interference screens in Drosophila cells, identifying 50 small molecule inhibitors of cytokinesis and 214 genes important for cytokinesis, including a new protein in the Aurora B pathway (Borr). By comparing small molecule and RNAi phenotypes, we identified a small molecule that inhibits the Aurora B kinase pathway. Our protein list provides a starting point for systematic dissection of cytokinesis, a direction that will be greatly facilitated by also having diverse small molecule inhibitors, which we have identified. Dissection of the Aurora B pathway, where we found a new gene and a specific small molecule inhibitor, should benefit particularly. Our study shows that parallel RNA interference and small molecule screening is a generally useful approach to identifying active small molecules and their target pathways.en_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Science (PLoS)en_US
dash.licenseLAA
dc.subjectGeneral Biochemistry, Genetics and Molecular Biologyen_US
dc.subjectGeneral Immunology and Microbiologyen_US
dc.subjectGeneral Neuroscienceen_US
dc.subjectGeneral Agricultural and Biological Sciencesen_US
dc.titleParallel Chemical Genetic and Genome-Wide RNAi Screens Identify Cytokinesis Inhibitors and Targetsen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalPLoS Biologyen_US
dc.date.available2021-04-05T15:56:19Z
dc.identifier.doi10.1371/journal.pbio.0020379
dc.source.journalPLoS Biol
dash.source.volume2;12
dash.source.pagee379
dash.contributor.affiliatedPerrimon, Norbert


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record