Show simple item record

dc.contributor.advisorGaitsgory, Dennis
dc.contributor.authorChen, Lin
dc.date.accessioned2021-07-13T04:18:20Z
dc.date.created2021
dc.date.issued2021-04-29
dc.date.submitted2021-05
dc.identifier.citationChen, Lin. 2021. Nearby Cycles and Dualities in Geometric Langlands Program. Doctoral dissertation, Harvard University Graduate School of Arts and Sciences.
dc.identifier.other28418884
dc.identifier.urihttps://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368200*
dc.description.abstractIn this thesis, we study nearby cycles on certain Vinberg-style degenerations in the geometric Langlands program. We relate them to various exotic dualities in this field, such as the (local and global) geometric second adjointness and the miraculous duality. We also prove the Deligne-Lusztig duality for automorphic sheaves, which was conjectured by Drinfeld-Wang and Gaitsgory.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dash.licenseLAA
dc.subjectMathematics
dc.titleNearby Cycles and Dualities in Geometric Langlands Program
dc.typeThesis or Dissertation
dash.depositing.authorChen, Lin
dc.date.available2021-07-13T04:18:20Z
thesis.degree.date2021
thesis.degree.grantorHarvard University Graduate School of Arts and Sciences
thesis.degree.levelDoctoral
thesis.degree.namePh.D.
dc.contributor.committeeMemberPopa, Mihnea
dc.contributor.committeeMemberGammage, Benjamin
dc.type.materialtext
thesis.degree.departmentMathematics
dc.identifier.orcid0000-0002-8676-9907
dash.author.emailkylinjchen@gmail.com


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record